
AFIT/GAM/ENC/99D-01

A NUMERICAL SIMULATION OF A CARBON BLACK

SUSPENSION CELL VIA A TIME{REVERSED,

DOUBLE LAYER COMPUTE ALGORITHM

THESIS
Gregg Thomas Anderson

AFIT/GAM/ENC/99D-01

Approved for public release; distribution unlimited

The views expressed in this thesis are those of the author and do not re
ect the o�cial

policy or position of the Department of Defense or the United States Government.

AFIT/GAM/ENC/99D-01

A NUMERICAL SIMULATION OF A CARBON BLACK SUSPENSION CELL

VIA A TIME{REVERSED, DOUBLE LAYER COMPUTE ALGORITHM

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Ful�llment of the

Requirements for the Degree of

Master of Science in Applied Mathematics

Gregg Thomas Anderson, B.S. Ed, B.S. EE

December, 1999

Approved for public release; distribution unlimited

AFIT/GAM/ENC/99D-01

A NUMERICAL SIMULATION OF A CARBON BLACK SUSPENSION CELL

VIA A TIME{REVERSED, DOUBLE LAYER COMPUTE ALGORITHM

Gregg Thomas Anderson, B.S. Ed, B.S. EE

Approved:

Dr. William P. Baker
Thesis Advisor

Date

Dr. Dennis W. Quinn
Committee Member

Date

Dr. Roger J. Becker
Committee Member

Date

Dr. Daniel G. McLean
Committee Member

Date

Acknowledgements

I would like to express my sincere appreciation to my faculty advisor, Dr. William Baker

and my colleague Dr. Roger Becker, for their guidance and support throughout the course

of this thesis project. I am particularly grateful to Dr. Becker for his patient and thoughtful

answers to my repeated questions. His insight and experience have been invaluable. I am

also grateful to Dr. Dan McLean for his many insightful comments and to Dr. Ruth Pachter

for her helpful suggestions. My thanks also to the \Unix God", Dr. James Lupo, whose

knowledge of Unix and computers rescued me more than once. What is Ohio's loss will be

Arizona's gain.

I would also like to thank my former supervisor, Ms. Pamela Schaefer of the Hard-

ened Materials Branch, Materials and Manufacturing Directorate, for her encouragement,

support and generous latitude given me throughout these many months. Now the real

work begins.

But most of all, I would like to thank my wife, Deb, for enduring all the lonely nights

and lost weekends to see this project through. Without her loyal support, her patient

sacri�ce and unwavering love, this journey of mine would have been hopeless. Thank you,

sweetheart.

Gregg Thomas Anderson

iii

Table of Contents

Page

Acknowledgements . iii

List of Figures . vi

List of Tables . x

Abstract . xi

I. Introduction . 1-1

1.1 Rationale . 1-1

1.2 Computer Simulation . 1-2

II. Physics . 2-1

2.1 Essential Parameters . 2-1

2.2 Assumptions . 2-4

2.3 Electron Collision Frequency and Di�usion Constant 2-5

2.4 Light Scattering . 2-7

III. Code Description . 3-1

3.1 Previous Code . 3-1

3.2 ZAP . 3-2

3.3 Present Code . 3-5

IV. The Algorithm and Its Results . 4-1

4.1 The Computational Scheme 4-1

4.2 Results . 4-8

V. Conclusion . 5-1

Appendix A. The Saha Equation . A-1

iv

Page

Appendix B. The Timestep Calculation B-1

B.1 Factors In
uencing Choice of Time Step B-1

B.2 Estimation of Initial Time Step B-2

Appendix C. Partial Code Listing . C-1

Bibliography . BIB-1

Vita . VITA-1

v

List of Figures

Figure Page

1.1. A shadowgraph of the Primary Zone formed by a laser entering a

liquid medium. Note the bubbles fanning out from the Primary Zone. 1-4

1.2. Schematic of the shadowgraph of Figure 1.1. The dark arrows point

in the general direction of the laser pulse toward a focal point and

represent the boundary of the Primary Zone. The white arrows rep-

resent the general direction of bubble formation as they �ll the volume

which surrounds the Primary Zone. 1-4

1.3. Input arrangement assumed by the simulation. A positive lens fo-

cuses the laser into a sample of thickness L. Near the exit surface,

the plasma ignites in the focal region, starting the simulation which

tracks the progress of plasma ignition toward the entrance surface.

The secondary zone receives scattered light from the Primary Zone. 1-6

1.4. The leftward advance of the plasma in the upper half of the Primary

Zone of Figure 1.3. The �rst layer to ignite is nearest the exit surface

in part (a). Layer 2 remains unignited because it's threshold
uence

level has not been reached. Soon, layer 2 ignites in part (b) and

similarly for layer 3 in part (c). 1-7

1.5. Three-dimensional focusing volume of the Primary Zone. The 1D

simulation produces intensity values at the center of the focal region's

exiting disk, i.e. at the tip of the arrow. 1-8

1.6. An event A in the sixth layer must be carefully tracked through �ve in-

tervening layers, each with overlapping nonlinear time grids, to prop-

agate correctly to B. The output from layer 6 becomes the input to

layer 5 and so on. 1-9

1.7. After the �rst 100mJ/cm2 of
uence, layer 1 activates and processes

information directly to output until Tau(2). From Tau(2), the pro-

gram must process output from layer 2 through layer 1 to output.

Layer 3 must process output through layer 2 and layer 1, etc. . . . 1-10

vi

Figure Page

2.1. Coordinate geometry of the incident electric �eld in the Z direction

and the scattering direction, r, for Rayleigh scattering. The particle

with radius a is positioned at the origin. (After Kerker [5: page 33]). 2-8

3.1. Grid geometry of the Primary Zone for the new algorithm. J denotes

layer number and HH the inter-layer distance. Rad is the radius for

a given layer. The base of the �gure denotes the Z axis. For the 1D

case, output is calculated at the rightmost point of the Z axis at J =

1. 3-2

3.2. Flowchart for the subroutine ZAP. 3-3

3.3. The J+1 layer of values is calculated �rst. Next, layer J starts. But

the nonlinear time axis of layer J is o�set from that of layer J+1. As

a result, some of the K time bins will be contained in a KQ bin and

others will fall on a boundary and must be divided. Hence, a portion

of the K+1 bin (XX) must be sent to KQ and a portion (YY) to KQ+1. 3-6

3.4. This �gure illustrates conceptually how the �rst three layer \histories"

overlap and how each successive layer starts earlier in the pulse. The

start time for layer 20 is Tau20 and, for its lifetime, processes \free"

input only. At the same time the processing for layer 20 loads the

input aray for layer 19. The procedure starts over again when layer

19 starts at Tau19. But layer 19 processes \free" input only until

Tau20. From Tau20 to completion, layer 19 takes its input from the

array loaded by layer 20. 3-8

3.5. Schematic representation of a hand-o�. Part (a) represents a con-

ceptual time bin and part (b) shows an output variable calculated

for that time bin. Part (c) shows the output variable being assigned

to the input time bin on the left. Part (d) displays this pattern of

assignment for a series of time bins comprising layer J which is the

active layer starting at the bottom and progressing toward the top.

The output of layer J awaits layer J-1 when layer J-1 becomes active. 3-10

vii

Figure Page

3.6. The �rst layer (layer 20) is a special case. It receives only uninter-

rupted laser energy. After passing the �rst 100 mJ/cm2, the layer

ignites. The layer then steps through its time bins, loading its output

array which yields a plot of the output which is input for the next

cycle. 3-11

3.7. Layer 19 starts out receiving free input but soon runs into layer 20.

Layer 20's array now becomes the input to layer 19 which loads its ar-

rays. When plotted, they yield an attenuated curve (displayed darker

for clarity). Once layer 19 is complete, layer 20 can be ignored for the

rest of the pulse. 3-11

4.1. Flowchart for the main program. 4-2

4.2. Each box in the bottom row represents an input value of direct laser

energy. Those boxes �lled with an X contain calculated values; those

without are waiting to be calculated. As K steps through time from

left to right, ZAP attenuates each input and assigns it to an output

box on the top to be processed later by layer 19. 4-4

4.3. After the o�set covered by loop B, loop C must now process input

previously loaded by loop A. 4-5

4.4. Conceptual positions of the A, B and C loops as they pertain to layers

19 and 20. Once layer 20 is computed, layer 19 and the rest of the

layers only experience loops B and C. 4-7

4.5. The input to the simulation is gaussian instead of a Q-switched pulse

shape due to an external subroutine which uses the readily available

formula for the Gaussian distribution. 4-8

4.6. The output of the older version of the simulation. Note: in each plot

pro�le, the timeline for the in{coming pulse extends to 28 nsecs. . . 4-9

4.7. The output of the newer version of the simulation. 4-10

4.8. Both the old and new outputs are plotted together. Note the close

similarity of both plots. 4-10

4.9. Output intensity as a function of pulse energy for the older version. 4-11

4.10. The output intensity of the new version as a function of pulse energy. 4-12

viii

Figure Page

4.11. Old output as a function of plasma radius, A0. The bottom curve is

for A0 = 8.0E-06 cm and is included as a baseline for comparison with

the curves above it generated from the smaller values of A0. In the

legend, 800 is 8.0E-06 cm, 190 is 1.90E-06 cm and 170 is 1.70E-06 cm. 4-12

4.12. New output as a function of plasma radius, A0. The bottom curve

is again for A0 = 8.0E-06 cm with the same legend designation as in

Figure 4.11. 4-13

4.13. The e�ects of selected layers on a single pulse are shown superimposed

for layers 19 through layer 2. In the legend, xy in hhhxy refers to the

layer number. The curves closer to the origin are layers nearer to focus. 4-13

5.1. O�-axis scattering will be accomplished through an array of node

points roughly spanning a cross-section of the Primary Zone. Only

the upper half need be used because of symmetry. The bottom line is

the present z-axis. 5-3

5.2. Part (a) displays three shaded grid points which supply input to the

single unshaded neighbor grid point. The symmetric input/output

scheme is shown in terms of grid position in part (b). 5-4

5.3. The cross-sectional plane of grid points, when rotated around the z-

axis, will span the roughly cone-shaped Primary Zone volume. . . . 5-4

B.1. The sharp rise time of the input Q-switched laser pulse dictates a

nonlinear time partition at the beginning to capture and sustain the

critical physics of scattering and absorption. B-2

B.2. In the �rst time step, the plasma expands from r to r +�r. B-3

ix

List of Tables

Table Page

3.1. Timing data representative of typical run times for both the old and

new versions of the code. \User" is the time spent executing the

code. \System" is the time spent performing system services such as

accessing the �le system, reporting time of day, etc. 3-7

4.1. The input data set used for both the old and new codes. Gamma is

the ratio of the heat capacity at constant volume to the heat capacity

at constant pressure. F-number is the ratio of the focal length of a

lens to its diameter. 4-9

5.1. The range of input variables determining the validity of the present

code. 5-2

x

AFIT/GAM/ENC/99D-01

Abstract

A numerical simulation of a carbon black suspension cell is explored which models

a laser{induced plasma within a liquid ethanol medium of approximately 1mm thickness.

The simulation model assumes a laser pulse with a pulse width of approxmiately 9 nsecs

propagating in the left{to{right direction striking the front surface of the medium and

focusing to a spot within the liquid volume. When the energy density within a given

irradiated volume is su�ciently high, it ignites the carbon particles and generates a large

number of free electrons, i.e. a plasma. The plasma couples with the in{coming laser energy

on a picosecond timescale, thereby attenuating the intensity of the remaining pulse as it

traverses the medium. The simulation divides the sample into discrete layers and models

the propagation of the plasma through the course of a single laser pulse containing a total

uence of 1 Joule/cm2. A new double layer, time{reversed algorithm is employed which

modi�es and extends the capabilities of the existing code. The older version is used as a

baseline for comparison with the new program.

xi

A NUMERICAL SIMULATION OF A CARBON BLACK SUSPENSION CELL

VIA A TIME{REVERSED, DOUBLE LAYER COMPUTE ALGORITHM

I. Introduction

1.1 Rationale

The aim of this thesis is to design a computer code which will aid in understanding

the physical interaction of an intense beam of light with a suspension of absorbing particles

in a liquid. An examination of the data in experiments on such a system indicates physical

e�ects which cannot be accounted for by conventional descriptions of the system response.

To remedy this de�ciency, researchers developed a theory or model of the response which

incorporates assumptions subject to challenge. The system response is very complicated,

so that comparisons with suitably designed experiments require the incorporation of the

model into a numerical code. A previous e�ort was carried out with this aim. The resulting

code, which I designate as the old code, su�ered from two limitations. The �rst is that

it used a one{dimensional desciption of the response. Therefore, it could not account

for scattering in the radial direction. This thesis describes the precursor to a new two{

dimensional code. The precursor overcomes this defect by laying the groundwork for the

future modeling of scattering e�ects. The second problem with the old code was that it was

not amenable to modeling elaborate physical descriptions. Since a multi{level description

of the processes which occur in the response places a heavy burden on computational time,

the program described in this thesis was written so that, with appropriate modi�cations,

it can run on a computer with multiple processors using parallel programming techniques.

The extant software was updated to run e�ciently on an IBM SP2 machine.

This thesis describes the physical assumptions on which the model rests. However,

it does not revalidate those assumptions. It concentrates on modifying the old code so

that later it can test those assumptions by observing how well the code predicts labora-

tory results. If, after the code has been thoroughly tested to con�rm that it is correctly

1-1

implementing the model, the code fails to be an accurate predictor of actual events, the

physical assumptions of the model will have to be modi�ed.

The old code, and the present code which has been derived from it, form a small part

in a much more vast computational mosaic. Materials researchers use an extensive array

of modeling software to analyze and predict material and device characteristics in an e�ort

to study and predict how well materials interact with light. Materials modeling techniques

employ ab initio �rst principles or semi{empirical approaches. The aim is to elucidate the

physical mechanisms at the molecular level without having to resort to costly and time

consuming experiments. In some cases, such simulated experiments are the only way to

gain insight into the underlying behavior. The magnitude and complexity of the present

investigations require that researchers must routinely rely on the computational resources

provided by the Major Shared Resource Center (MSRC) located here at Wright{Patterson

AFB and at other sites across the DoD.

1.2 Computer Simulation

The code developed for this thesis models the interaction of a single pulse of laser

energy with a thin, liquid cell. The code, however, can be generalized to describe other

systems. The geometry involved is, of course, three{dimensional. The simulation, however,

selects certain 2{D regions or \slices" of the cell where the interaction takes place and

processes these as representative of the phenomenon in two{dimensions. Then, to �ll an

appropriate 3{D volume, the slice is rotated around an axis through the center of the cell.

If the slice spans a diameter, the rotation is through � radians. If the slice spans a radius,

the rotation is through 2� radians.

The material medium used in this study is composed of carbon micro{particles sus-

pended in ethanol, of a pre{determined thickness, and positioned at right angles to the

direction of propagation of the laser pulse. The computer program divides the medium

into discrete layers within a cone{shaped region called the Primary Zone (PZ). This is the

volume �lled by the laser beam traveling from left to right as it narrows to a focal spot.

Dividing the Primary Zone this way captures the ignition of the carbon particles within it

which starts the plasma and, thereafter, captures the physical mechanisms of absorption

1-2

from electrons and scattering from bubbles as the plasma progresses from layer to layer.

This not only allows a numerical \divide and conquer" approach but it also a�ords a means

of tracking the physical progress as well as the accumulating e�ects of the ignited plasma.

A typical image, or shadowgraph, of the di�erent regions within the sample is shown in

Figure 1.1. The Primary Zone is the cone{shaped, dark region and is the volume directly

illuminated by the laser beam. It contains the plasma generated by the ignition of the car-

bon particles within it. Another region, however, surrounds the Primary Zone. This more

spherical secondary zone is populated predominantly by bubbles which, as experimental

evidence indicates, scatter the laser radiation. Evidently, enough light is being scattered

out of the Primary Zone with su�cient energy to create these secondary zone bubbles. The

image in Figure 1.1 shows the e�ects of a single laser pulse entering a liquid medium from

the left and narrowing to focus at the end of a dark, cone-shaped region|the Primary

Zone. The shadowgraph image, of course, is a two{dimensional view. A spatial schematic

of the regions involved is shown in Figure 1.2.

The shadowgraph reveals the accumulation of a number of events occurring over the

lifetime of a single pulse. Based on the most current analysis (see Goedert [3]), at the

beginning of the pulse, bubbles and hot electrons are generated within the Primary Zone.

But enough energy is scattered out of the Primary Zone that bubbles are created a short

time later in the secondary zone. Toward the end of the pulse, laser energy scatters from

the Primary Zone and o� the secondary zone bubbles with the result that the laser pulse

scatters from a much larger volume than just the Primary Zone alone. Unfortunately,

current shadowgraphs of the kind shown in Figure 1.1 are not time{resolved so as to

capture this sequence of events.

The geometry of the simulation is shown in Figure 1.3. Here, the slice of interest

involves the upper half of the Primary Zone. For this thesis project, however, only the

Z axis of the Primary Zone was investigated. The code is, therefore, a one{dimensional

code. It is the goal of later work to model the contribution of the scattering e�ects from

the secondary zone by modeling the upper slice of the Primary Zone and then rotating it

2� radians around the Z axis.

1-3

Figure 1.1 A shadowgraph of the Primary Zone formed by a laser entering a liquid
medium. Note the bubbles fanning out from the Primary Zone.

Entrance Surface

Bubble Region

Direction of propagation

Figure 1.2 Schematic of the shadowgraph of Figure 1.1. The dark arrows point in the
general direction of the laser pulse toward a focal point and represent the
boundary of the Primary Zone. The white arrows represent the general direc-
tion of bubble formation as they �ll the volume which surrounds the Primary
Zone.

1-4

The code calculates the attenuating e�ects of a plasma and bubbles by �rst assuming

a sample of thickness L irradiated by a laser pulse from a positive lens, as shown in

Figure 1.3. The positive lens converges the beam toward the back (exit) surface of the

sample. The code sets up the necessary space and time variables to track the progress

of the plasma within the laser beam volume (the Primary Zone). These variables track

the progress of the plasma over the lifetime of a single laser pulse. The beam enters the

sample from the left already converging from the input lens and comes to focus in the �rst

layer. As the beam narrows, the intensity (W/cm2) increases since the same amount of

light is being forced to cover a smaller and smaller area. After a small amount of time,

the
uence (J/cm2), which is the time integral of intensity, will become high enough to

ignite its carbon particles, which starts the plasma. (See Figure 1.4). The second layer,

upstream from the �rst, will ignite but only after it too has attained enough
uence in

like manner. Similarly for the third layer and so on toward the entrance surface. Thus

the timing of ignition of each successive layer is an approximation to the development of

the plasma within the length of the sample. The resulting attenuation of the laser beam

occurs because the ignition sequence of the layers' plasma advances toward the entrance

surface, coupling head on with the incoming laser energy in front of it, reducing the beam's

intensity as it progresses rightward, shielding the detector.

The previous version of the code calculates the attenuation of the laser from the

plasma and bubbles by starting at the exit surface on the Z axis. The code then transfers

those results to neighboring layers through an accumulating process toward the entrance

surface (see Figure 1.4). The calculation starts the moment the carbon particles in the layer

at the focal volume vaporize and is designated Tau(n) for layer n. It must be emphasized,

however, that the plasma does not propagate like the spread of a
ame front throughout

the Primary Zone backwards from the �rst ignition point in the starting layer. Rather,

the ignition of the plasma is dependent on the geometry of the Primary Zone, each layer

igniting locally only after 100 mJ have passed that particular layer. In other words, if the

edges of the Primary Zone were parallel, the entire volume would ignite simultaneously.

The previous version accumulates the attenuating e�ects of the newly formed plasma

and bubbles by adding new layers through time. Each calculation is coordinated with a

1-5

��������
��������
��������

��������
��������
��������

���������
���������
���������

���������
���������
���������

L

Entrance Exit

Secondary ZonePrimary Zone

Focal RegionZ Axis

Figure 1.3 Input arrangement assumed by the simulation. A positive lens focuses the
laser into a sample of thickness L. Near the exit surface, the plasma ignites in
the focal region, starting the simulation which tracks the progress of plasma
ignition toward the entrance surface. The secondary zone receives scattered
light from the Primary Zone.

\wall clock" that acts as the master clock for the simulation of the entire pulse. The

program starts at time t = 0 and progresses toward the end of the pulse, adding slices in

a leftward progression through space since that is the direction of progress of the plasma.

A three-dimensional view of the Primary Zone is shown in Figure 1.5. Here, the entrance

surface is layer 20 and the exit surface is layer 1. The plasma ignites at the tip of the arrow

and progresses rearward toward the entrance surface.

The f/# (f{number) of the lens is a key parameter for the simulation, and illustrates

how changing it a�ects how the code adjusts individual layer ignition times. With large

f/#'s, i.e. when the focal length of the lens is much greater than its diameter, each layer's

ignition time will be nearly the same because each layer, which acts like a perpendicular

slice through the cone, will have more nearly the same area and, therefore, the intensity

di�erence between layers will not be great. Small f/#'s lead to the reverse the e�ect,

resulting in a larger divergence of ignition thresholds among the layers. The e�ect of

the former is a more instantaneous ignition of the plasma across the entire volume of the

Primary Zone. The e�ect of the latter is to retard the plasma's leftward progress.

1-6

��
��
��
��
��
��

��
��
��
��
��
��

(c)

(b)

(a)

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

23 1

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

2

1

1

23

3

Figure 1.4 The leftward advance of the plasma in the upper half of the Primary Zone
of Figure 1.3. The �rst layer to ignite is nearest the exit surface in part (a).
Layer 2 remains unignited because it's threshold
uence level has not been
reached. Soon, layer 2 ignites in part (b) and similarly for layer 3 in part (c).

1-7

Entrance surface

Exit surface

Figure 1.5 Three-dimensional focusing volume of the Primary Zone. The 1D simulation
produces intensity values at the center of the focal region's exiting disk, i.e.
at the tip of the arrow.

Since the simulation is one-dimensional, the results are determined at the z axis.

Problems occur, however, as the number of layers increases. For the purposes of compu-

tational e�ciency, each layer's time line is nonlinearly partitioned, i.e. each layer's time

steps are clustered near its ignition point. Much of the critical response phenomenon occurs

during plasma ignition and the subsequent rapid electron di�usion, which happens within

roughly the �rst 600 picoseconds. As a result, the model must impose this high rate of

energy injection so that the simulation corresponds to the evolving temporal dynamics. In

a sense, energy must continually \stoke" the plasma to keep it sustained. Otherwise, with

time steps too large, the electrons become starved of energy and quickly cool, extinguishing

the plasma and its attenuating e�ects.

Hence, a nonlinear time scale must be imposed on each layer as shown in Figure 1.6.

These time scales are represented as vertical fences, one for each layer, and \stacked"

within themselves more closely together near the bottom than at the top. The code must

resort to a complex logistical tracking system for managing the time and space variables

for a given slice or layer. An event happening at A, for example, must have its attenuation

\expressed" through �ve do-loops beginning with layer �ve. Layer �ve's history will be

updated or \brought up to" the timeline associated with the arrow AB in Figure 1.6 by

taking its input from its \leftward" neighbor and producing an output which must be made

1-8

A B

Layer 2 ignition

Wall clock
 time

Simulation End

Layer 1 ignition

5 4 3 2 1

Figure 1.6 An event A in the sixth layer must be carefully tracked through �ve interven-
ing layers, each with overlapping nonlinear time grids, to propagate correctly
to B. The output from layer 6 becomes the input to layer 5 and so on.

ready for its \rightward" neighbor. The Do-loop for layer 4 is started next until its output

is brought up to the arrow AB. This process is repeated until �nally, layer one uses its

Do-loop to process its input up to arrow AB. The output at the end of this last Do-loop

becomes the attenuated value associated with the event \A" and is written to the output

�le. The intricacy of the relay process grows with each newly added layer through this

accumulating series of Do loops.

Figure 1.7 further illustrates this cascading Do-loop system in slightly more detail.

An event in layer 1 is calculated for each time bin up until the ignition point of layer 2.

Calculating layer 1's events is then suspended so that the �rst event in layer 2 can begin.

But now, each event in layer 2 must be processed (attenuated) through layer 1 but not

before the calculation in layer 1 is resumed to bring it up to the same wall clock \level"

as layer 2. As layer 2 proceeds, each time increment must be coordinated with the time

bins of layer 1 until the ignition point of Layer 3 is reached. Layer 3 events must then be

coordinated with the previous two layers, layer 4 events with the previous three and so

on. In other words, each new layer must not only calculate its own events, but it must

ensure each intervening layer is brought up to the same master wall clock level before

1-9

tTime = Tau(1)+ ∆

���
���
���

���
���
���
���
���
���
���

���
���
���
������
���
���
���

���
���
���
������
���
���

���
���
���

Time

Wall Clock Time

Tau(2)

Time = Tau(1)

3

2

passes through
First 100 mJ/cm^21

Figure 1.7 After the �rst 100mJ/cm2 of
uence, layer 1 activates and processes informa-
tion directly to output until Tau(2). From Tau(2), the program must process
output from layer 2 through layer 1 to output. Layer 3 must process output
through layer 2 and layer 1, etc.

1-10

calculating its next event. This neighbor{to{neighbor relay, or hand{o�, propagates data

rightward as the model (by design) incrementally reduces the value of each data point,

thereby mimicking the attenuating e�ects of the induced plasma. The program ends when

the wall clock time reaches the end of the pulse.

As the number of layers increases, so does the numerical load. The program uses

small time steps, numbering approximately 2,500 for each layer, and, during some parts

of the program, the time steps must be rescaled, which further strains the numerical load.

Eventually, beyond approximately seven to ten layers, the code begins to yield non{physical

results because it is unable to su�ciently resolve any di�erences in overlapping time scales

after a critical number of intervening layers is exceeded.

The old Fortran code is comprised of two sections: one for modeling plasma growth

for a single laser pulse, the other for generating intensity pro�les by plotting the results

from a series of input pulses. This thesis only investigates modi�cations and enhancements

to the single{pulse code. Scattering e�ects were not included in the old code, which limits

it's predictive power. While certainly improving the code's modeling �delity, the addition

would increase the overall computational time since the model is sequential, i.e. depends

on a single processor, and thus scattering e�ects have not been added.

Finally, it should be re{emphasized that this thesis builds on physical insight and

the attendant assumptions already laid down by previous researchers after a careful ex-

amination of experimental data. Remarks pertaining to these assumptions will be found

throughout this work. As was mentioned at the beginning of this chapter, it is not the

intent of this thesis to reevaluate the validity of the physical underpinnings of the present

model|a task beyond the scope of this thesis; it is to design a more robust computer

program which will incorporate ways of extending the limits of the present computer code

and so test the assumptions found in the model.

1-11

II. Physics

This chapter presents an overview of the essential physics of the carbon suspension cell.

It begins with a description of a suspension cell and describes how the code mimics the

interaction of the device with an in{coming laser pulse through the use of descrete numerical

slices. It then proceeds to a qualitative discussion of scattering and absorption relating to

a plasma and bubbles followed with a quantitative development of the essential modeling

parameters. Much of the development contained in this chapter follows the development

of Kerker [5].

2.1 Essential Parameters

The objective of the code is to model the response behavior of a carbon suspension

cell, testing the assumptions underlying the physical response mechanisms. This chapter,

however, will not attempt to revalidate these assumptions nor the methods used to de-

rive the simulation parameters but to present them within an experimentally established

physical context.

The cell is a thin medium composed of carbon particles suspended in a liquid or solid

host, sandwiched between two glass surfaces. The cell is then subjected to a short (10

nanosecond) laser pulse with a power in the range of 10W to 1MW. The code simulates the

response characteristics of the carbon black suspension by calculating attenuation cross{

sections for two simultaneous, physical processes: 1) a rapidly forming plasma, which

contributes to the absorption of the laser energy and 2) relatively slow bubble growth,

which causes scattering. The medium of the Primary Zone is divided into descrete cross{

sectional slices comprised of a surface area perpendicular to the direction of propagation

of the laser beam and a thickness which is a fraction of the thickness of the medium. The

cross{section of each slice or layer becomes smaller toward the focus, owing to the geometry

of the focusing optics. For any given layer, the original code attempts to cascade its output

to neighboring layers lying rightward, toward focus, through the use of an expanding Do

loop. Each successive hand-o� serves to decrement the layer's original output. The Do

loop ends when the rightmost layer writes its results to an output �le. Both the old and

2-1

new algorithms appeal to the same underlying physical assumptions, which have remained

essentially unchanged. These assumptons are referred to as \the model."

Underlying the model's response algorithm is the concept that scattering and ab-

sorption from a scattering center is linked to the center's dielectric constant "1 and to that

of the center's surrounding medium "2. The dielectric constant of ethanol is 1.85 and is

assumed to be a real quantity. The dielectric constant for a bubble is one and real. A

plasma's dielectric constant, however, is complex|a plasma absorbs light. It's absorption

is linearly proportional to the imaginary part of its dielectric constant, "
00

; scattering is

dominated by the real part, "
0

. In practice, "
0

remains equal to the original host (liquid

ethanol) value in cases of interest. Hence, a plasma in this context does not scatter.

In condensed media in the visible, plasma absorption overwhelmingly dominates

scattering. There are two limiting cases where this occurs: when the plasma centers are

discrete and localized, known as the Rayleigh region, and when they have coalesced into

a continuum. The model, as a result, divides absorption from a plasma into a Rayleigh

regime and a continuous regime, adding a bridging intermediate regime. All three cases

attempt to re
ect the changes in the system's response characteristics as a function of size.

In this way, the model captures the essential response mechanism of plasma absorption

through its functional dependence on "
00

.

The code treats bubble scattering by assuming the initial bubble, like the nascent

plasma, to be of a size on the order of the carbon particle. The rate equation for bubble

growth is, to a �rst approximation, derived from a large body of research. (See [9], [2],

[7], [12] and references therein.) The bubbles will expand adiabatically, i.e. no heat will be

added in the initial stages of growth. Small bubbles are limited in their expansion through

surface tension, whereas larger ones are constrained through ambient pressure. Integration

of the rate equation is performed a priori via Mathcad in a separate computational run

resulting in a �le of bubble size versus time. The �le is then read in by the main program

and stored for later use.

As with the plasma, bubble growth is divided into three separate categories based on

its initiation and evolution within a liquid: 1) an explosive stage, 2) an adiabatic expansion

2-2

stage with an interior of carbon vapor and 3) an isothermal expansion stage with an interior

of ethanol vapor. The �rst stage can be modeled as an underwater explosion of TNT and

happens within the �rst picosecond. This provides the bubble radius and internal pressure

as inputs for the second stage. Since bubbles would oscillate without any damping forces,

their sizes are kept �xed at their maximum; otherwise, damping is not included in the

simulation. The third stage, isothermal expansion, has not been included in the program

owing to the emphasis on picosecond time scales.

The code ultimately produces a response curve of intensity versus time, displaying

the attenuating e�ects on the laser pulse as it traverses the sample. Because scattering

from bubbles and absorption and scattering due to a plasma are nearly independent, these

two processes were uncoupled in the code and computed separately for each time step,

their contributions to extinction added together in the exponent of the Beer-Lambert Law

I = I0e
��z ; (2.1)

where I0 is the initial intensity propagating over a distance z and � is the extinction

coe�cient.

The physics underlying the response mechanisms of the simulation has been unaltered

in revising the code; only changes to the computational algorithm were made. Any hard

data compiled against the fundamental physical quantities are limited or nonexistent and

must be estimated. The methods for arriving at these quantities follow the development

in [5] and [11]. The procedure will be to brie
y describe these relevant quantities and how

they are estimated.

We begin with the cross{sections of the plasma and bubbles alluded to at the begin-

ning of this chapter. Their calculation requires knowing the size of the active volume, the

wavelength of the incident radiation and the respective dielectric constants for the active

centers and their surrounding medium. The dielectric constant, in turn, depends indirectly

on the total energy contained in the scattering medium. The desired input parameters,

therefore, are comprised of the energy contained within a scattering volume of a plasma

center and the size of the bubble. Complications arise because of the inherently coupled

2-3

nature of the competing processes surrounding plasma formation and plasma di�usion.

Initially, at carbon vaporization, the plasma is a sea of hot electrons which rapidly dif-

fuse. Di�usion lowers the temperature of the plasma, slowing its growth and changing its

absorption cross{section. Together with other losses, this cooling must be o�set by laser

heating. Bubble growth, on the other hand, is assumed to be much slower and independent

of the laser intensity. That is, the light couples to the bubble; that is why scattering occurs.

The light, however, does not couple into the bubble and for this reason, bubble scattering

dominates, whereas bubble absorption is negligible. There is an indirect dependency be-

tween bubble size and the laser but this is seen at longer time scales. Then, the bubble

growth rate increases because the plasma has heated the surrounding liquid. Using the

current, approximate bubble growth model of the present simulation, the bubble radius is

not coupled to the laser's energy, making possible a more direct and simple calculation of

the bubble size. In addition, and as noted above, the dielectric constants for the plasma

and bubbles are required. In the case of a bubble, the dielectric constant is one (\free

space"). The dielectric constant for a plasma depends on the plasma's density which, in

turn, depends on its temperature as illustrated in appendix A.

The quantities most important in the physical description of the cell's response within

the present model are then 1) the electron collision frequency and di�usion coe�cient, 2)

the plasma complex dielectic constant, 3) particle size and 4) particle density.

2.2 Assumptions

The simulation model assumes small, spherical particles with radius a evenly dis-

tributed on a simple, cubic lattice. The input is a pulse from a laser with an energy of 1

Joule. The model performs its functions based on the assumption that the carbon parti-

cles have been heated to their vaporization point which would require an estimated
uence

of 70 mJ/cm2 This �gure can vary, however, with little change to the �nal results. The

program currently uses 100mJ/cm2 and since the model does not speci�cally treat carbon

heating, the �rst 100 mJ are assumed to be completely transmitted.

As previously discussed, the model de-couples the calculation of the plasma and bub-

bles, since their attenuation e�ects are largely independent of one another. Attenuation

2-4

e�ects are derived from the respective absorption and scattering cross{sections. Initially,

a value for the plasma temperature is assumed together with the Saha equation (see Ap-

pendix A) to �nd the density of the plasma electrons. Combining the electron density with

the ionization energies of the liquid molecules yields the plasma density which, together

with the temperature, determines the complex dielectric constant. Given ", the cross{

sections and �nally the attenuation are re{estimated. This interative process continues

throughout the pulse.

2.3 Electron Collision Frequency and Di�usion Constant

The electron collision frequency, �c, can be estimated from

�c =
v

le
; (2.2)

where v is the most probable electron velocity and le is the electron mean free path. The

most probable electron velocity can be found by allowing an expression of the form F (v)dv

to represent the mean number of electrons contained in a unit volume with velocity v in the

range from v to v+dv. Employing the Maxwell velocity distribution, F (v), becomes [8: page

207]

F (v) = 4� n

�
m

2 � kT

�3

2

v2e�mv2=2kT ; (2.3)

where n is the number of molecules per unit volume, m is the mass of the molecule in kg,

k = 1:38� 10�23J �K�1 and T = temperature in degrees kelvin.

The most probable velocity is found from the condition that

dF

dv
= 0; (2.4)

which yields

v2 =
2kT

m
: (2.5)

2-5

Hence the most probable velocity is

v =

s
2kT

m
: (2.6)

The values for k(erg�K�1), T (K) and m(gm) yield a probable velocity from equation 2.6

whereupon

v(cm=s) = 5:93� 107
q
E(eV): (2.7)

where E is now the temperature of the electron in units of electron volts. An electron

with a temperature of around 1 or 2 eV will, therefore, have a velocity respectively of 6 or

8� 107cm/s.

The electron mean free path, le, is estimated from the equation

le =
1

Nqc
; (2.8)

where N is the electron density and qc is the collision cross{section of the hot electrons

with the surrounding liquid molecules. N is found from

N =
�

M
NA; (2.9)

where � is mass density, M is gram molecular weight of the liquid and NA is Avagadro's

number. The collisional cross{section, qc, for ethanol and other organic liquids at low

pressures have been estimated from data provided by Brown (see [1]). Brown [1: page

13] de�nes a \probability of collision," Pc, as \the average number of collisions that occur

when an electron travels a distance of 1 cm at a pressure of 1 torr at 0�C." Pc depends on

velocity in general and has units of an area per unit pressure per unit volume.

A value of approximately 110 for the collisional cross{section of ethanol at 1 eV can

be extrapolated from this data (see Brown [1: page 21]), together with the relationship

qc = 2:83 � 10�17 Pc: (2.10)

2-6

This, along with the value for N , is inserted into equation 2.8 to yield the mean free path

of the electron.

The electron di�usion coe�cient, D, can be shown to depend on the root mean square

of the velocity (see Brown [1: page 99]):

D =
1

3
hvi le: (2.11)

The above relationships have been used to estimate the corresponding parameters for

ethanol [1]. At 1 eV we have the mean free path of the electron, le = 3:2�A, the electron

collision frequency, �c = 1:8� 1015=s and the di�usion coe�cient, D = 0:71cm2=s .

2.4 Light Scattering

A brief description of the scattering of light from small spherical particles will serve to

put into context and emphasize the important remaining quantities of the model, namely

the dielectric constant, particle size and particle density.

The model assumes the scattering particle to be a small sphere interacting with a

parallel beam of linearly polarized light. It is further assumed the radius of the sphere

to be small compared with the beam's wavelength. As a result, the instantaneous electric

�eld inside the sphere is uniform. The �eld outside the sphere can be described as the

superposition of the initial �eld, without the presence of the sphere, with a �eld identical

to one produced by a simple dipole positioned in parallel to the incident �eld. The electric

�eld inside the sphere is given as (see [5: pages 31{33]),

Eint =

�
3 "1

("1 + 2 "2)

�
E0; (2.12)

where "1 and "2 are, respectively, the dielectric constants of the sphere and the surrounding

medium and E0 is the free space electric �eld. The dipole moment is given as

p = 4� "2a
3

�
("1 � "2)

("1 + 2 "2)

�
E0; (2.13)

2-7

where a is the radius of the scattering center. The polarizability, �0, is de�ned as

�0 = a3
�
("1 � "2)

("1 + 2 "2)

�
: (2.14)

The intensity of the scattered wave of wavelength � and distance r from the scattering

particle is indicated by the positional geometry shown in Figure 2.1.

H
i

Z

iE

Y

X

a

r

φ

ψ

θ

Figure 2.1 Coordinate geometry of the incident electric �eld in the Z direction and the
scattering direction, r, for Rayleigh scattering. The particle with radius a is
positioned at the origin. (After Kerker [5: page 33]).

If the incident wave has unit intensity, the scattered wave has an intensity given by

(see Stratton [10: page 436])

I =
16�4a6

r2�4

�
"2 � "1
"2 + 2"1

�2
sin2 ; (2.15)

where is the angle between r, the scattering direction, and the dipole on the x axis and

� is the wavelength within the medium. For the present application, the roles of "1 and "2

in equation 2.15 are reversed from those of equations 2.12, 2.13 and 2.14.

Integrating equation 2.15 over a sphere yields an e�ective area scattered by the

particle called the scattering cross{section,

Csca =
Z �

0

Z
2�

0

Ir2 sin d d�: (2.16)

2-8

Combining equation 2.16 with equation 2.15 we have [5: page 37]

Csca =
128�5a6

3�4

�
"2 � "1
"2 + 2"1

�
2

=
24�3V 2

�4

�
"2 � "1
"2 + 2"1

�
2

; (2.17)

where V is the particle volume (V = 4

3
�a3).

The e�ciency of the scattering particle is de�ned as its cross{section divided by its

geometric cross{section, which is � a2 for a sphere. The scattering e�ciency then becomes

(see Kerker [5: page 37])

Qsca =
128�4a4

3�4

�
"2 � "1
"2 + 2"1

�2
; (2.18)

A convenient, dimensionless size parameter, �, is introduced and is de�ned as the radius

of the particle divided by the wavelength of the incident light,

� =
2�a

�
; (2.19)

which de�nes the spherical radius using units of 2�=�. Equation 2.18 then reduces to

Qsca =
8

3
�4
�
"2 � "1
"2 + 2"1

�
2

: (2.20)

A complex refractive index describes an absorbing medium in which case it can be shown

that the scattering cross{section, qs, becomes (see Kerker [5])

qs =
8�

3
(nrk)

4a6jA2j: (2.21)

where k is the wavenumber, nr is the real part of the refractive index of the medium, a is

the radius of the scattering center and A is the polarizability given by

A =
"2 � "1
"2 + 2"1

: (2.22)

2-9

If the scattering particles are small compared to � (�� 1), the absorption cross{section,

qa, can also be shown to be (see Kerker [5])

qa = 4�nrka
3Im[A]: (2.23)

where a3A is the polarizability of the scattering particle.

Equations 2.21 and 2.23 serve to highlight the strong dependence of scattering cross{

sections on particle size and wavelength for the small particle regime. If typical values for

the real and complex dielectric constants for ethanol are used, i.e. respectively "0 = 2:5

and "00 = 2:3, and taking the ratio of equations 2.21 and 2.23 and using the real part of

the index of refraction, nr = 1:7, the resulting ratio is

qs=qa = 0:8(ka)3: (2.24)

Equation 2.24 reveals that absorption will predominate over scattering for 1�m wave-

length radiation for particles with radii less than 180 nm. If absorption is far greater than

scattering, then the extinction coe�cient, �, in equation 2.1 becomes Nq where N is the

particle density and q is now the total cross{section. The density N can be derived from

the inter- particle spacing, l, through

N = 1=l 3: (2.25)

A typical value for Im[A] as found in the literature is 0.5 and with 1.7 for n, equation 2.23

yields

qa = 70a3=�: (2.26)

If � = 532 nm and the particle radius is 15 nm, then

qa = 4:4� 10�13cm2: (2.27)

2-10

For a transmission T of 70%, a thickness of 1 mm, and using

T = e�NqL; (2.28)

we would have N = 8:11� 1012 cm�3 and from equation 2.25, l � 0:50 �m.

For purposes of simulation, the question of whether a plasma primarily absorbs or

scatters (expressed through equation 2.24) can be readily answered. At the instant of

carbon vaporization, all that exists in the liquid are electrons and bubbles. The scattering

cross{section for an electron at low frequencies is the Thomson cross{section which is

0:665 � 10�24 cm2 (see [4: page 490]); the electron's absorption cross{section is on the

order of 2� 10�17 cm2 (see [3: page 1459]). Hence, we have the ratio

�a
�s

= 3:0� 107; (2.29)

where �a and �s are, respectively, the absorption and scattering cross{sections for the

electron. The plasma limits through absorption; the bubbles through scattering.

2-11

III. Code Description

This chapter focuses on establishing a more complete understanding of the present work by

comparing the old and new versions. It examines the set{up of both codes but concentrates

on features of the new algorithm designed to overcome the limitations of the old program.

The chapter also explores the main computational subroutine, ZAP, which is the same in

both versions.

3.1 Previous Code

The old program divides the sample into discrete layers, each layer experiencing

carbon varporization at times proportional to its distance from the �rst layer. The number

of layers, N, is only one of a number of input variables the program reads at program start-

up. Others include f-number (or f/#), pulse energy, carbon density and particle radius.

The input variables are read in from input �les, de�ned as parameters within the main

body of the code itself, or de�ned within an external module which the main program can

access. After the input is properly set and the appropariate arrays initialized, the program

begins with layer one.

Figure 3.1 is a diagram of the Primary Zone as it pertains to the new algorithm

and anticipates a 2D treatment of o�{axis scattering which was not addressed in the old

version. Both the old and new codes, however, are alike in that both calculate values

progressively along the z{axis which is the bottom line in the �gure. The �nal output for

both is produced at layer J = 1.

Layer one (J = 1) is the �rst to ignite in real time, marking t = 0 for the entire

simulation. The old code then begins stepping through two computational loops. The

�rst, an inner loop, calculates the increase in plasma radius and bubble size for a given

increment of time for each layer. This yields a value for the attenuation of the intensity

using Beer's Law. The second outer loop increments from a given layer to the next layer

backward toward the entrance of the sample.

The heart of the calculation for both the old and new versions of the code occurs

within the inner loop in a subroutine called ZAP to be described in the next section. The

3-1

Rad(J)

J = N J = N-1 J J = 1

J = layer number

HH(N-1)HH(N)

Figure 3.1 Grid geometry of the Primary Zone for the new algorithm. J denotes layer
number and HH the inter-layer distance. Rad is the radius for a given layer.
The base of the �gure denotes the Z axis. For the 1D case, output is calculated
at the rightmost point of the Z axis at J = 1.

inner loop of the older version begins when layer J ignites and runs until the end of the

pulse. After the �rst pass of the loop, ZAP is called to create input for the previous layer,

layer J-1. The loop then cycles within layer J-1, calling ZAP at each time step. The inner

loop moves on to the next intervening layer (previously ignited) but only after residing in

layer J-1 the amount of time given by the ignition time for layer J, thus allowing J-1 to

attenuate the output from J. Stepping next to J-2, the loop cycles only long enough to

attenuate J-1's output, again calling ZAP at each time step, and so on toward the exiting

layer, layer 1. (See Figure 3.1.) Since the model assumes no time delay between the

ignition time of layer J and its a�ects on the �nal exiting layer, the exiting layer's intensity

values are paired with layer J's turn-on times and the pairs are written to an output �le.

The overall e�ect of cascading the intensity and
uence from J through the intervening

layers is to incrementally attenuate J's original intensity and
uence values in proportion

to their run of the gauntlet. Once at the exit surface, the inner loop stops and the outer

loop steps to layer J+1 and the entire process repeats.

3.2 ZAP

ZAP's purpose is to calculate the extinction coe�cient, �, for use in equation 2.1.

To do this, ZAP's computational scheme is divided into four parts. The �rst part involves

establishing key parameters and de�ning intermediate variables. Here, the cross{section

3-2

for Rayleigh scattering from bubbles is calculated, what the program calls \muiso:"

� =
8�

3

�
�� 1

�+ 1

�
2

k4r6: (3.1)

where � is the dielectric constant of the medium, k is the wavenumber and r the radius of

the bubble.

The remaining parts of ZAP calculate the contribution to the extinction from plasma

absorption, what the program calls \muplas." (See Figure 3.2.) The three remaining

ZAP called
PZ_DATA

K: time no. ku

F: fluence value fcell

jvJ: Layer no.

2

λ
az(jv) <

2

λ
, CRITaz(jv),

2

λ
< az(jv) < CRIT

increment uz(jv)

RETURN

az(jv) >= CRIT

(Continuous)
Calculate muplas(jv,ku)

RETURN

Plasma radius, az, initialized
Energy density, uz, initialized

Set parameters
λ

Declare variables
and arrays

Read in
J, K, F

Calculate muiso(jv,ku)

and CRIT

λ in PZ_DATA

CRIT in common blk

increment uz(jv)
increment az(jv)

Calculate muplas(jv,ku)
(Rayleigh)

(Intermediate)
Calculate muplas(jv,ku)

increment az(jv)
increment uz(jv)

RETURN

Figure 3.2 Flowchart for the subroutine ZAP.

3-3

regions of ZAP are three separate calculational routes. The logic decides which route to

take based on comparing the radius of the expanding plasma with the wavelength of the

laser. If the radius of the plasma, az, is smaller than �
2
, use the physics for Rayleigh

scattering from small spheres. If the radius has become as large as the separation distance

between scattering centers, use the physics for the continuum. The third, intermediate

region is a linear extrapolation between the �rst two.

In all three routes, the process is essentially the same. The scattering and absorption

cross{sections are calculated and brought together to obtain � from

� = np(qaS + qsb); (3.2)

where np is the density of carbon particles, qa is the plasma absorption, S is a stimulated

emission factor and qsb is the bubble scattering cross{section. Armed with the bubble

radius, ZAP computes the bubble scattering cross{section. ZAP then multiplies this times

that fraction of scattered light still remaining within the given layer's collection optics.

Next, ZAP �nds the absorption cross{section by using the subroutine \sigmaa." The

output from sigmaa takes the in{coming
uence, multiplies it by the absorption cross{

section, and calls the result \energya." Energya is added to the accumulating plasma

center's energy tally to yield the total energy of all the electrons emanating from a single

particle. Next, ZAP calculates the di�usion coe�cient, \di�". Since di� depends on the

temperature, it is updated to the temperature reached at the end of the last time step.

Di� is then used to update the plasma radius. (In the continuum region, these last two

steps are not calculated since di�usion is not de�ned for a continuum.) The new plasma

radius determines the new plasma volume which is used with the recently updated energy

to yield the updated plasma energy density. ZAP then returns to the main program

where the energy density, \uz(j)," is used in the SAHA lookup routines \lookupt" and

\lookupn" to generate updates for the plasma temperature array, \te(j)", and the density

array, \density(j)". (See Appendix A for a more complete description of LOOKUPT and

LOOKUPN).

3-4

3.3 Present Code

The approach taken to remedy the faults of the previous program, namely the pro-

gressive numerical loading and the attendant complex time keeping, resulted in essentially

a backward, double-layer hand-o� scheme. A single layer takes input from a previous cal-

culation cycle, processes it, and then deposits it into the input array from the next layer.

Once accomplished, the present layer's values are forgotten. This constitutes the hand{o�,

to be explained in more detail shortly. The result is that only two layers need be tracked in

time and space during a single computational cycle, allowing the numerical algorithm an

increased number of computational layers. The \backward" nature of the scheme derives

from the fact that the �rst layer to be calculated in the code is the last layer to experience

plasma ignition, since it is situated at the entrance of the sample.

The advantages of eliminating some complexities inherent in the old code are bal-

anced, however, by new complexities. The new code forces one to think backwards in time.

More importantly, it also requires each layer's output to be correctly partitioned from the

output of the present layer into the input of the next. (See Figure 3.3). This proves to be

rather tricky.

The newer \partitioning" time scheme requires more code to carefully track each

layer's progress. This is because each layer now represents a complete, and somewhat

independent computational cycle requiring its own set of time and space variables to be

properly initialized and tracked. In the older version, each layer's spatial and temporal

variables could be accounted for by sequencially incrementing the appropriate loop counting

variables through that code's nested Do loop construction. The additional computing

overhead of the new code, however, impacts the speed of the simulation. The old version

was run on a Zenith 486 when the original code was being written and took approximately

two minutes to run. For this project, however, both versions were run on the same IBM

machine. Typical timing data for the old and new versions are shown in Table 3.1. The

intent of revising the original code was not necessarily toward faster execution but toward

eventually parallelizing the code to accomodate the increased demands imposed by adding

the rudiments of scattering. Scattering will be simulated along a two-dimensional plane

perpendicular to the z axis of the Primary Zone and will require more than one processor.

3-5

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

TIME

KQ

KQ+1

YY

XX

Layer JLayer J + 1

K+1

K

Figure 3.3 The J+1 layer of values is calculated �rst. Next, layer J starts. But the
nonlinear time axis of layer J is o�set from that of layer J+1. As a result,
some of the K time bins will be contained in a KQ bin and others will fall
on a boundary and must be divided. Hence, a portion of the K+1 bin (XX)
must be sent to KQ and a portion (YY) to KQ+1.

3-6

OLD NEW

USER 27.74 84.42
SYSTEM 0.05 1.75

TOTAL 27.79sec 86.17sec

Table 3.1 Timing data representative of typical run times for both the old and new
versions of the code. \User" is the time spent executing the code. \System"
is the time spent performing system services such as accessing the �le system,
reporting time of day, etc.

The newer code also has quadruple the number of time steps over the original program

which has 2,500. This was done to compensate for the progressive loss of data as each layer

completed its cycle. Each layer must calculate intensity values for each of its time bins.

These values are then assigned to its `next door' time bins but in a prescribed way. (See

Figure 3.3). Because the given layer starts igniting later than its previous layer (and

therefore o�set from its neighbor slightly in time) and because each layer's time bins are

partitioned nonlinearly and so get larger with each time increment, a given layer's time

bins are smaller than the time bins of the receiving layer. If the receiving layer time bins

are much larger than the sending layer time bins, all the sending values become assigned to

fewer and fewer receiving bins, in e�ect crowding the migration of intensity values toward

the origin with each new layer. This had the e�ect of eliminating time bins as time went on

and, hence, eliminating data points, yielding intensity plots increasingly sparse toward the

end of the timeline and crowded toward the origin. After approximately the 13th layer,

the algorithm left all the data condensed along a curve close to the origin and no data

after it. The problem was resolved with more and smaller time steps so as to keep the

layer{to{layer ratio of time bin size from becoming too large. (For the discussion on the

choice of timestep, see Appendix B).

The older version's code rested on a straightforward approach to tracking the progress

of the carbon plasma: start at the focal region where layer 1 ignites �rst and proceed until

layer 2 ignites; as layer 2 ignites, incorporate that layer's results into the ongoing calculation

of layer 1 until layer 3 ignites whereupon layer 3 is added to the continuing calculation of

the previous two and so on.

3-7

The newer version, by contrast, starts with the layer that exists farthest from the

focal region, i.e. layer 20. (See Figure 3.4.) This is the �rst layer. The code then projects

its output into the next layer closer to focus. This projection or \hand{o�", schematically

represented in Figure 3.5, is accomplished with each complete pass through the outer main

Do loop. At the top of the main loop, the time is reset to begin at the ignition point of

the next layer, which becomes the recipient of the hand{o�, and the process repeats.

Time

Pulse Energy

Input pulse shape

edge
Leading

Tau 18

Tau 19
Tau 20

Figure 3.4 This �gure illustrates conceptually how the �rst three layer \histories" over-
lap and how each successive layer starts earlier in the pulse. The start time
for layer 20 is Tau20 and, for its lifetime, processes \free" input only. At
the same time the processing for layer 20 loads the input aray for layer 19.
The procedure starts over again when layer 19 starts at Tau19. But layer 19
processes \free" input only until Tau20. From Tau20 to completion, layer 19
takes its input from the array loaded by layer 20.

The hand{o� between the layers, while obvious, turned out to be critically important

to the proper function of the simulation. The algorithm might perform
awlessly within

a given layer but yet put its results in the wrong place, destroying the whole process of

energy transfer from layer to layer. A fragment of code which performs the �rst leg of the

hand-o� for a given layer for one complete cycle of the main Do loop is shown below.

Iin(J-1,I)%value = IO(J,I)%value

Iin(J-1,I)%time = IO(J,I)%time

3-8

The output intensity variables \IO(J,I)%value" and \IO(J,I)%time" have been calculated

for layer J and are being assigned to the corresponding input variables for layer J-1. For the

next cycle of the Do loop, layer J-1 becomes layer J, its input variable, \Iin(J,KK)%value",

having been modi�ed by MUPLAS and MUISO. That portion of the code is shown next.

IO(J,KQ)%value = Iin(J,KK)%value*ARATIO* &

DEXP(-MUPLAS(J,K)*HH(J))*DEXP(-MUISO(J,K)*HH(J))

IO(J,KQ)%time = Iin(J,KK)%time

This is the second leg of the hand-o�: the adjusted value for \Iin(J,KK)%value" and the

value of \Iin(J,KK)%time" are assigned to their corresponding output variables which will

be read in by the next layer during the next cycle of the Do loop.

If the �rst layer's output has been calculated (a special case), the second layer starts

with another type of calculation until the �rst layer's ignition time (See Figure 3.6). But

since the second layer starts sooner in time, its start time is o�set from that of the �rst.

The second layer, (see Figure 3.7), cycles through this o�set time receiving unobstructed

(\free") laser energy. After the o�set, the �rst layer's output becomes the input to the

second layer until the end of the pulse. At the end of the pulse, the input array for the

next layer upstream has been loaded and the process repeats.

This chapter has highlighted the main features of the new algorithm: the grid geom-

etry of the Primary Zone, the new timing set{up between two layers, the main computa-

tional subroutine, ZAP, and the hand{o� routine which allows the results of one layer to

be properly transferred to the next. As such, it serves as a motivation for a more complete

understanding of the new algorithm and its results, the subject of the next chapter.

3-9

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

������
������
������

������
������
������

��������

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

Time

�����
�����
�����

�����
�����
�����

(a)

(c)

(b)

(d)
J-1 J

Figure 3.5 Schematic representation of a hand-o�. Part (a) represents a conceptual
time bin and part (b) shows an output variable calculated for that time bin.
Part (c) shows the output variable being assigned to the input time bin on
the left. Part (d) displays this pattern of assignment for a series of time
bins comprising layer J which is the active layer starting at the bottom and
progressing toward the top. The output of layer J awaits layer J-1 when layer
J-1 becomes active.

3-10

20

Endpulse

passes through

Tau(20)

StartFirst 100 mJ/cm^2

������

���
���
���
���

���
���
���
���

�����
�����
�����
�����

��
��

������������
������������
����������

���
���
���
���

Wall clock time
Time

Figure 3.6 The �rst layer (layer 20) is a special case. It receives only uninterrupted laser
energy. After passing the �rst 100 mJ/cm2, the layer ignites. The layer then
steps through its time bins, loading its output array which yields a plot of
the output which is input for the next cycle.

19 20

Endpulse

Tau(19)

Start

Tau(20)

������������

������

������

������

������������

������
������
������������
������

������������

������
������
������

������
������������

������

����
����
����
����

������

����
����
����
����
�������
�������
�������
�������

������

����
����
����
����

����
����
����

����
����
��������
����
����
����

��������
��������������
����
����
����
����

Wall clock time

����
����
����
����

Time

Figure 3.7 Layer 19 starts out receiving free input but soon runs into layer 20. Layer
20's array now becomes the input to layer 19 which loads its arrays. When
plotted, they yield an attenuated curve (displayed darker for clarity). Once
layer 19 is complete, layer 20 can be ignored for the rest of the pulse.

3-11

IV. The Algorithm and Its Results

This chapter discusses the general computational approach used in this thesis. The three

special Do{loops|the \A", \B" and \C" loops|are discussed in detail. These form the

core of the new algorithm. The chapter concludes with a discussion of the �nal numerical

results which are composed of plots of intensity versus time for a single pulse.

4.1 The Computational Scheme

Except for cosmetic changes, much of the code connected with the subroutine ZAP

has been left untouched. This includes the three separate computational routes within

ZAP discussed in Chapter 3: the Rayleigh, intermediate and continuous regions. These

regions are in the listing in Appendix C. What has changed are the sequence of steps

leading up to each call to ZAP. The acts of the play have been rewritten but the main

actor, even though he wears a slightly di�erent costume and his cues have been rephrased,

still has his old lines.

The general computational scheme can be distilled into a simple
owchart as shown in

Figure 4.1. After the program de�nes its variables and loads the necessary input arrays, it

enters a large Do loop controlled by the variable J, the layer number. As seen in Figure 4.1,

the loop starts with J equal to 20, which means the program is starting at the entrance

surface of the cell. The program then enters a second, nested Do loop called loop \A"

which performs the calculations for layer 20 calculations, calling ZAP during each loop

cycle. The program uses ZAP to perform similar calculations using the \B" and \C" loops

for intermediate values of J and �nally writes the results to an output �le when J is equal

to 1.

Each call to ZAP results in an output which, as discussed in Chapter 3, is immediately

employed in the Beer{Lambert equation to calculate the attenuation of the input intensity

seen by a given layer over a given time increment. A typical call looks like:

CALL ZAP(J,K,F1)

IO(J,I)%value = I1*DEXP(-MUPLAS(J,K)*HH(J))*DEXP(-MUISO(J,K)*HH(J))

4-1

Load arrays

Declare variables
and arrays

Start

Stop: J = 1
Step: J = -1

Start: J = 20

J = ?

Read input pulse shape and

20 1

Set parameters

bubble growth files

time partition
Calc tau’s and

"C" loops. Call ZAP
layer J using "B" and
Calculate output of

Write results to
output file

Stop

Calculate output of
layer 20 using "A" loop

Call ZAP
20 < J < 1

Figure 4.1 Flowchart for the main program.

4-2

Here, I1 on the second line is the input intensity being attenuated and IO(J,I)%value is

the value of the new output intensity. HH(J) is a thickness of a given layer.

ZAP always receives three arguments: J, K and F1. J, an integer, represents the

layer number and therefore is the spatial coordinate. J starts at 20 and ends at 1. K

is an integer representing time. K starts at 1 at ignition of the plasma and increments

through each time step until the end of the pulse, counting over 10,000 time steps in each

layer. K serves as a reference index, coordinating inputs from one layer into the outputs

for the next. K also counts into preloaded arrays for bubble growth and plasma expansion.

Whatever value K is during the course of the simulation, the program knows the relative

sizes of the expanding plasma and the bubble.

The simulation assumes that at the moment of ignition, the spherically{shaped gas

of hot electrons and the newly formed bubble have the same dimensions. Both bubble

and plasma arrays, therefore, start with the same radius for K = 1, which is the �rst

time step. The plasma is assumed to expand faster than the bubble. This means that

the hot electrons di�use outward and hence the plasma radius grows from the center more

rapidly than does the bubble radius. As a result, the values of the plasma array, which

express a growing radial distance in centimeters, are much larger than the corresponding

bubble array values for the same array index counter from the moment of ignition until

the end of the pulse. One test of a correctly running program is based on a
ag routine,

deliberately built into the code, to detect any divergence from these growth rates. The

ag routine continuously compares the growth of the plasma and the bubble. Should the

K for the bubble array inadvertantly index a value larger than what K indexes in the

plasma array (K will be identical for both), the
ag becomes set, stopping the program

because the bubble can't be larger than the plasma. Finally, F1 is a
oating point value

representing
uence, where again,
uence is de�ned as energy per unit area or the time

integral of intensity. ZAP, therefore, knows at any moment what layer it is in, where in

the history of the pulse it is and how much
uence it has to work with. ZAP takes that

bit of
uence, calculates attenuating factors due to the plasma and the bubbles (\muplas"

and \muiso" respectively) and, given its time value and layer number, hands these o� to

the Beer-Lambert Law for attenuation.

4-3

Space

K

Time

(Input)

(Output)

20Layer

Figure 4.2 Each box in the bottom row represents an input value of direct laser energy.
Those boxes �lled with an X contain calculated values; those without are
waiting to be calculated. As K steps through time from left to right, ZAP
attenuates each input and assigns it to an output box on the top to be
processed later by layer 19.

The �rst layer to receive input using the new algorithm is layer 20, the layer at the

entrance face of the sample. With no neighboring layer between it and the laser beam to

interfere with it, layer 20 receives pure input from the incoming beam (See Figure 4.2).

For this reason, the input and output processing of layer 20 is treated di�erently than

layers 19 through layer 2. Layer 1 is likewise processed much like layer 20 since it is the

last layer and it too has no neighbor on one of its sides. The processing of input into layer

20 is performed by its own, exclusive Do loop called loop \A". Once loop A is �nished,

it has loaded the input array for the next layer. Loop A runs only once on layer 20 and

thereafter exits the computational scheme. A
avor for how loop A works without going

into the details of Fortran can be obtained from looking at the pseudo code for this loop:

var start, end: integer;

procedure loopA

do from start to end

get next intensity value from �le;

calculate next
uence value;

call ZAP;

calculate outputintensity;

inputintensity for next layer := outputintensity of present layer;

output
uence of presentlayer := outputintensity of presentlayer��t;

enddo

4-4

end

At the top of the loop, a value of intensity is read in from an input �le which is then used to

calculate the corresponding
uence value. ZAP uses this to calculate in-turn the absorption

and scattering cross-sections. These are immediately used to calculate the output intensity

which becomes the input intensity for the next layer. Finally, the layer's output
uence is

loaded for plotting purposes.

Layer 19 begins a sequence of two loops, performed back{to{back, and repeating

from layers 19 down to layer 2. The �rst, loop B, behaves like loop A except it must

coordinate with its follow-on, loop C. Loop B performs its functions over the small interval

of time after layer 19 has turned on but before the turn-on time for layer 20. This small

o�set marks the distinction of the new algorithm from the old: each new layer is o�set

from its preceeding neighbor in negative time|layer 19 starts sooner than layer 20 (See

Figure 4.3). Hence loop B works with direct laser input until layer 20 ignites, afterwhich

loop C of layer 19 must now work with the input previously created by layer 20. Once

loop C is completed, layer 19 has loaded the input array for layer 18 and layer 20 is no

longer required. Next, layer 18 sees a small o�set from layer 19, whereupon all of the

values previously calculated in layer 19 are now inputs for layer 18 and so on.

Time

19

Loop "C"Loop "B"

Layer

20 Offset
Loop "A"

Layer

K
Space

Figure 4.3 After the o�set covered by loop B, loop C must now process input previously
loaded by loop A.

Loop B is similar to A with the exception that it must \pivot" on its last values and

coordinate these with the beginning of loop C, which is taking its input from a previous

layer:

var start, loopBend: integer;

4-5

procedure loop B

do from start to loopBend

get next intensity value from �le;

calculate next
uence value;

call ZAP;

calculate outputintensity;

inputintensity for nextlayer := outputintensity of presentlayer;

output
uence of presentlayer := outputintensity of presentlayer��t;

if loopvariable = loopBend then

partition timebin

loopB gets XX share

process with ZAP

exitloopB

end

enddo

end

When loop B is at the end, part of the input
uence into the present layer will come

directly from the laser, XX, and the other will come from the output from the previous

layer, YY, (See Figure 3.3). Once the XX portion is processed by ZAP, loop B hands its

function over to loop C which starts by processing its YY portion.

var loopCstart, loopCend: integer;

procedure loop C

processYYfromloopB

do from loopCstart to loopCend

get next
uence from last layer;

adjust next
uence;

call ZAP;

outputintensity := inputintensity from last layer�attenuation;

inputintensity for next layer := outputintensity of presentlayer;

4-6

output
uence of presentlayer := outputintensity of presentlayer��t;

enddo

end

Loop C is the primary computational loop for the new algorithm. During each cycle, it

must receive input from the previous calculations and partition them into the proper time

bins of the next layer. With each successive hand-o�, the output becomes more and more

attenuated until �nally, the output of layer 1 displays the properly attenuated curve.

Tau(20)

Tau(19)

(B loop)

(A loop)

(C loop)

18

19

20

Tau(18)

Figure 4.4 Conceptual positions of the A, B and C loops as they pertain to layers 19
and 20. Once layer 20 is computed, layer 19 and the rest of the layers only
experience loops B and C.

All three loops are shown as they might appear related conceptually to the pro�le of

a single pulse for the �rst two computational layers, as shown in Figure 4.4. Layer 20 has

the least amount of pulse to deal with, since it is the last to start in \real" time. Layer 20's

A loop processes its input and then loads its output array, which is shown in the �gure

as X'd boxes below the arrow for Layer 20. Next, layer 19 has loop B load a portion of

its array directly from the pulse. Then, shortly thereafter, at tau(20), the C loop takes

over and processes the output boxes from layer 20, turning them into output boxes below

the arrow for layer 19. This double layer arrangement repeats itself, with each successive

4-7

cycle starting closer to the origin. The �nal layer's output simply reports the accumulated

results of the preceeding ones to an output �le.

4.2 Results

With both the old and the new codes receiving the same input pulse shapes (see

Figure 4.5) and the same set of input parameters (see Table 4.1), both exhibit nearly the

same output shape|a sharp rise in the output pulse with a precipitous cuto� early in the

pulse, albeit with a slightly greater peak intensity in the old version. (See Figures 4.6, 4.7

and 4.8).

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

9e+07

1e+08

0 5e-09 1e-08 1.5e-08 2e-08 2.5e-08 3e-08

In
te

ns
ity

 (
W

/c
m

^2
)

Time (sec)

Gaussian input

Figure 4.5 The input to the simulation is gaussian instead of a Q-switched pulse shape
due to an external subroutine which uses the readily available formula for the
Gaussian distribution.

An explanation for the slight di�erences seen in Figure 4.8 is possible. Apart from

the algorithms of the two codes, the only di�erence between the two versions is the number

of time steps|2,500 in the old versus 10,000 in the new. As a result, events in the new

code are being captured in time four times more accurately. This would reasonably have

the e�ect of much more precisely locating an event in a time bin for a given layer with

the corresponding time bin of its receiving layer. Consequently, each layer's output would

progress within much more narrowly aligned time limits from beginning to end. With no

4-8

Name Symbol(dimensions) Value

Particle Radius a0(cm) 8:00� 10�6

Gamma
 1.33
F-number f/# 5
Number of Particles np(/cm

3) 1:0� 1010

Di�usion constant dconst(cm2/s) 0.7
Laser Pulse Width width(nsec) 9.0
Liquid Ionization Potential Chi(1)(eV) 12.2
Liquid Ionization Potential Chi(2)(eV) 14.0
Liquid Ionization Potential Chi(3)(eV) 16.0
Laser Pulse Energy Epulse(Joules) 6:0� 10�5

Table 4.1 The input data set used for both the old and new codes. Gamma is the
ratio of the heat capacity at constant volume to the heat capacity at constant
pressure. F-number is the ratio of the focal length of a lens to its diameter.

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

0 2 4 6 8 10 12

In
te

ns
ity

 (
W

/c
m

^2
)

Time (nsec)

Lengend
’OLDresults’ every 5

Figure 4.6 The output of the older version of the simulation. Note: in each plot pro�le,
the timeline for the in{coming pulse extends to 28 nsecs.

4-9

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

0 2 4 6 8 10 12

In
te

ns
ity

 (
W

/c
m

^2
)

Time (nsec)

Lengend
’NEWresults’ every 30 u 2:3

Figure 4.7 The output of the newer version of the simulation.

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

0 2 4 6 8 10 12

In
te

ns
ity

 (
W

/c
m

^2
)

Time (nsec)

Lengend
’OLDresults’ every 5

’NEWresults’ every 30 u 2:3

Figure 4.8 Both the old and new outputs are plotted together. Note the close similarity
of both plots.

4-10

`gauntlet' to run as in Figure 1.6, the e�ect would be to shift the �nal output closer to the

actual time values compared with the more coarse time divisions of the old code and with

a correspondingly greater accumulated attenuation.

Figure 4.8 and those following demonstrate that the simulation of each code is based

on the same model and that the algorithms of each are equivalent. Both re
ect the same

trend when undergoing changes to the input pulse energy (See Figures 4.9 and 4.10). A

plot of output intensity from the old code as a function of plasma radius is shown in

Figure 4.11 and for the new code is shown in Figure 4.12 . The response e�ects of the

new simulation develop consistently from the front to the exiting surface where Figure 4.13

displays the e�ects of the simulation on selected intervening layers between the entrance

(layer 20) and exit (layer 1) surfaces.

0

1e+08

2e+08

3e+08

4e+08

5e+08

6e+08

7e+08

8e+08

9e+08

1e+09

0 2 4 6 8 10 12

In
te

ns
ity

 (
W

/c
m

^2
)

Time (nsec)

Lengend
’EpulseOLD=1e-04J’ every 5
’EpulseOLD=3e-04J’ every 5
’EpulseOLD=6e-04J’ every 5
’EpulseOLD=6e-05J’ every 5

Figure 4.9 Output intensity as a function of pulse energy for the older version.

The new algorithm is by no means perfect. It is slower than the old version, but not

signi�cantly slower. The new algorithm requires each layer to be treated separately which

necessitated that the RBUBR array loop be �lled by interpolating between the elements

of the RBUB array within the MAIN loop. Now, each new layer number J requires a new

4-11

0

1e+08

2e+08

3e+08

4e+08

5e+08

6e+08

7e+08

8e+08

9e+08

0 2 4 6 8 10 12

In
te

ns
ity

 (
W

/c
m

^2
)

Time (nsec)

Lengend
’Epulse=1e-04J’ every 30
’Epulse=3e-04J’ every 30
’Epulse=6e-04J’ every 30
’Epulse=6e-05J’ every 30

Figure 4.10 The output intensity of the new version as a function of pulse energy.

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

4.5e+08

5e+08

5.5e+08

0 2 4 6 8 10 12 14

In
te

ns
ity

 (
W

/c
m

^2
)

Time (nsec)

Lengend
’OLDresults800’ every 5
’OLDresults190’ every 5
’OLDresults170’ every 5

Figure 4.11 Old output as a function of plasma radius, A0. The bottom curve is for A0
= 8.0E-06 cm and is included as a baseline for comparison with the curves
above it generated from the smaller values of A0. In the legend, 800 is
8.0E-06 cm, 190 is 1.90E-06 cm and 170 is 1.70E-06 cm.

4-12

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

4.5e+08

5e+08

0 2 4 6 8 10 12 14

In
te

ns
ity

 (
W

/c
m

^2
)

Time (nsec)

Lengend
’NEWresults800’ every 30
’NEWresults190’ every 30
’NEWresults170’ every 30

Figure 4.12 New output as a function of plasma radius, A0. The bottom curve is again
for A0 = 8.0E-06 cm with the same legend designation as in Figure 4.11.

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

0 5 10 15

In
te

ns
ity

 (
W

/c
m

^2
)

Time (nsec)

Lengend
’hhh19’ every 30 u 3:4
’hhh15’ every 30 u 3:4
’hhh11’ every 30 u 3:4
’hhh7’ every 30 u 3:4
’hhh4’ every 30 u 3:4
’hhh2’ every 30 u 3:4

Figure 4.13 The e�ects of selected layers on a single pulse are shown superimposed for
layers 19 through layer 2. In the legend, xy in hhhxy refers to the layer
number. The curves closer to the origin are layers nearer to focus.

4-13

RBUBR array to be �lled, whereas in the old code, RBUBR is �lled only once. Together

with quadruple the number of time divisions, the new program is bound to run slower.

To create a faster code in the future, arrays keyed to each layer will have to be �lled �rst

outside of MAIN. Then each layer-speci�c bubble array can be called directly from within

MAIN. The intent of this thesis, however, was not necessarily toward faster execution

(although that certainly would have been a plus) but towards creating a code that could

be extended to two dimensions and could accomodate parallel programming techniques

while still retaining the essential features of the original code for testing purposes.

The algorithm still su�ers from a number of limitations. For example, small decre-

ments in the plasma radius, a0, near 1.7E-06 cm produce anomalous results due, in part,

to an incomplete development of the bubble growth �les which support this size regime.

The equations for bubble growth which have been incorporated into the code have not

been well developed and will therefore need to be revised. In addition, adiabatic growth

for bubbles in short time scales displays a strong dependence on the ratio of speci�c heats

of the surrounding liquid and the vapor of the interior, namely
. This functional relation-

ship has not been written into the program and will need to be addressed in the future.

The code also su�ers from an inability to properly accomodate the e�ects of scattering,

which when accomplished within a parallel construction, should account for much more

light re-entering the Primary Zone, further modifying the output intensity pro�le. Finally,

the liquid will boil at high energy densities, which is another feature that needs to be

addressed.

Overall, however, the aim of this thesis project has been largely successful. Errors

have been uncovered and corrected. For example, values of the plasma radius were not

being properly accumulated, and so the formula for the plasma radius in ZAP had to be

adjusted. It was also discovered that the old and new codes were not being compared

using exactly the same starting conditions. This involved the values of ARATIO for the

old and the new code where ARATIO is de�ned as the ratio of the area of the J + 1th

layer to the Jth layer. It proportionally increases the intensity seen by the Jth layer as

the simulation moves to layers closer to the focal region. While the values for ARATIO

had each been calculated correctly, the timing of their use was o�set by one layer between

4-14

the two versions of the code. This too was corrected. Re�nements have been built into the

code in the form of Fortran 90 features. Most importantly, the vexing limitation inherent

in the old code, that of an upper limit to the number of layers a sample could be divided

into, has been largely overcome. This allows a more reasonable con�dence level to be

attained for N > 10, where N = the layer number. This is important for the larger task

ahead, that of scaling the simulation to two dimensions. It is then that the more important

aspect, largely ignored in the present e�ort, can be seriously addressed, namely scattering.

4-15

V. Conclusion

A new approach to simulating the response behavior of a carbon black suspension cell has

been developed employing a double{layer hand{o� algorithm. The response mechanism

results from the coupling e�ects on a laser pulse with a rapidly expanding plasma. The

plasma is generated from the ignition of carbon aggregates suspended within the liquid

sample while being irradiated by the incoming pulse. As the plasma expands, the pulse

becomes increasingly attenuated such that points beyond the exit surface of the sample

are shielded from the e�ects of the pulse by virtue of the interaction between the plasma

and the laser.

The new approach is based on physical insight forged from earlier experimental work.

It is outside the scope of this thesis to re{examine the physical basis of the code and

its assumptions|what has been termed \the model". The intent of this thesis was to

modify and extend the numerical algorithm `surrounding' the model in such a way that

it's assumptions might be tested through the future developement of a 3{D code using

concurrent programming techniques.

Like its predecessor, the new scheme divides a sample into discrete layers, trans-

forming inputs into slightly attenuated output. The old version of the code su�ered from

a cumbersome tracking mechanism which eventually constrained the numerical computa-

tion. Unlike its predecessor, however, the new algorithm chooses the �rst layer as being

the farthest in space from the site of plasma ignition (the focal region) and the last in time

to ignite. Each layer is therefore set in motion with unique time and space variables which

create its own local `history'. The algorithm superimposes each layer's history in such a

way that once a given layer's output has been properly prepared and processed, tracking

that layer is no longer necessary, allowing a greater number of layers to subdivide a sample

thickness. Whereas the old version typically allowed from seven to ten layers, the new

version routinely runs twenty.

The new algorithm su�ers from a number of limitations. The algorithm is not faster

than the old version. This is because, with everything else equal in terms of initial param-

eters and data sets, the new code has four times the number of time steps with four times

5-1

the number of calls to the subroutine ZAP. This was done to eliminate the data `drop out'

seen in the initial output plots when the new algorithm was being developed. The code,

therefore, will have to be modi�ed to run more e�ciently. For example, one way will be

to explore numbers of time steps less than 10,000 which still prevent data drop out yet

maintain the same time domain structure for capturing the essential temporal dynamics.

Another option is rather than customizing the RBUBR array within MAIN's Do loop for

each J, RBUBR will be loaded for each J beforehand. This will require a two-dimensional

RBUBR array. Also, the number of time steps will have to be reduced which means ad-

dressing the issue of the cancelling time bins. The code also su�ers from a lack of a re�ned

treatment of bubble growth and boiling. But perhaps the most signi�cant
aw in the

present code is a lack of a description for scattering which a�icted the old code as well.

Largely ignored due to time constraints, scattering will need to be seriously addressed in

the future if the new code is to be realistically predictive. The reliability of the present

code is addressed through Table 5.1 which lists the ranges of input variables within which

the simulation, in its present state, can be expected to produce physically valid results.

Name (symbol) Range

Particle Radius (a0) 10nm to 100nm
F-number (f/#) 1 to 50
Particle Density (np) 1010 to 1014=cm3

Di�usion Const (dconst) 0.3 to 7 cm2/s
Pulse Width (width) 1ns to 30ns
Ionization Potential (�) 7 to 14 eV
Plasma Temperature (TE) 0.5 to 20 eV
Intensity (Iin) �10GW/cm2

Table 5.1 The range of input variables determining the validity of the present code.

Scattering e�ects will require a two{dimensional treatment. The plasma is composed

of electrons. The bubbles, however, cannot be ignored because they are located at the

center of each cell. They become scattering centers, growing larger throughout the lifetime

of the plasma. They cause a signi�cant amount of light to be redirected back into the

Primary Zone. Presently, the Primary Zone \exists" only as the z-axis. To mimic the

action of redirected light, scatterers o� the z-axis will be required, which means a two-

5-2

dimensional array of points will be set up to span the roughly cone-shaped Primary Zone.

(See Figure 5.1).

Figure 5.1 O�-axis scattering will be accomplished through an array of node points
roughly spanning a cross-section of the Primary Zone. Only the upper half
need be used because of symmetry. The bottom line is the present z-axis.

With the array in place, a scattering transfer function will be imposed to approximate

light scattering into the Primary Zone. The initial transfer function will impose a 3{1{3

arrangement of input to output, as shown in Figure 5.2. The top and bottom boundary

lines of the Primary Zone will have a 2{1{2 scheme. Each array point will be designated a

position relative to the origin of the grid. The three leftward neighbors will supply input

and the three rightward neighbors will receive the output in proportion to their respective

positions on either side of the (i,j)th grid point, as shown in Figure 5.2. The circular

symmetry of the Primary Zone will allow the array of grid points to simulate the entire

volume as shown in Figure 5.3.

The present work is a start. The code will become truly useful only as far as it

faithfully predicts well known material response behavior. The code will have attained

such a predictive capability and with reasonable con�dence if, given a set of well{de�ned

starting conditions, it can simulate the observed phenomena. Once this `retroprediction'

goal is attained, the code can become a useful \what if" tool for the materials scientist

or engineer. For example, researchers inevitably want to know which boundary conditions

of a device design favor one response over another. Speci�cally, they are interested in

knowing the kind of behavior a material would exhibit if the particles of the suspension

5-3

i+1,j+1

i+1,j-1i-1,j-1

i-1,j+1

i-1,j i+1,j

(a) (b)

Figure 5.2 Part (a) displays three shaded grid points which supply input to the single
unshaded neighbor grid point. The symmetric input/output scheme is shown
in terms of grid position in part (b).

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
�� �

�
�
�

��
��
��
��
��
��
��
��

�
�
�
� �
�
�

�
�
�

�
�
�
�����

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
��

Figure 5.3 The cross-sectional plane of grid points, when rotated around the z-axis, will
span the roughly cone-shaped Primary Zone volume.

5-4

cell were smaller. The present code has already shown it has the potential to answer that

question in a semi-qualitative way, thereby showing promise as a guide in helping materials

researchers in their on-going experiments.

5-5

Appendix A. The Saha Equation

The Saha equation governs the thermal ionization of carbon particles within a volume

of a plasma under conditions of local thermodynamic equilibrium and is an extension to

the Boltzman relation. It is this thermal ionization of carbon atoms which forms the basis

for the material response under investigation in this thesis. The Boltzman distribution

will be discussed �rst. It describes the fraction of atoms having a certain quantum level

within the volume of a plasma. The Boltzman formula will then be extended to include

consecutive ionization levels of an atom, which leads to the Saha relation. The means by

which the code actually implements the SAHA equation and a listing of the code itself

completes the appendix. The development is taken from Lochte [6].

If a volume of a plasma contains the number n of identical particles in a cubic

centimeter, then some fraction will exist in an excited state. If that fraction is designated

ni and they occupy the ith quantum level having energy Ei and assuming thermodynamic

equilibrium, then ni can be described by the Boltzman equation,

ni
n
=

gi
U(T)

exp

�
�
Ei

kT

�
; (A.1)

where gi is a statistical weight for the i
th level and U(T) is the partition function,

U(T) =
X
i

gi exp

�
�
Ei

kT

�
: (A.2)

The summation must include all levels including the highest existing level. This last energy

level is given by

Ej = � ���; (A.3)

where � is the ionization energy.

We now look at ionized atoms and consider the numbers nz and nz�1, which represent

the number of particles occupying respectively the z and z�1 ionization levels of an atom.

z is the number of electric charges seen by the radiating electron and z � 1 is the charge

on the ion or atom. By comparing two consecutive ionization levels we can extend the

Boltzman relationship to these ionized atoms. The ratio of the number of atoms in the

A-1

z � 1 level to those in the z level is given by the SAHA equation,

ne
nz
nz�1

� Sz�1(T) = 2
Uz(T)

Uz�1(T)

(2�m0kT)
3

2

h3
exp

�
�
�z�1 ���z�1

kT

�
; (A.4)

where nz and nz�1 are particle densities and ne is the density of free electrons per cm3.

The two partition functions, Uz and Uz�1, correspond to the two ionization levels and m0

is the electron's rest mass. If the ionization energy is given in eV and the temperature in

degrees Kelvin, equation A.4 reduces somewhat to a more practical expression,

nenz
nz�1

=
Uz(T)

Uz�1(T)
4:83� 1015T

3

2 exp

�
�1:1605� 104

�z�1 ���z�1
T

�
: (A.5)

The ratio of the partition functions in equation A.5 reduces to 1/2. The code also

supplies a series of constant ionization potentials, �1, �2 and �3, and treats the ��s as a

constant, yielding an e�ective �. The value of �� is estimated at between 1 and 1:5 eV.

Simplifying the exponential term, we have

nenz
nz�1

= 2:4� 1015T
3

2 exp

�
�

�z�1
(8:617� 10�5)T

�
: (A.6)

Solving the SAHA equation for temperature based on the number of free electrons, ne,

is di�cult. Instead, the code resorts to a subroutine called GENERATELOOKUP which

occurs before the MAIN Do loop. GENERATELOOKUP creates lookup tables for values

of temperature, free electron density and energy density, creating in e�ect a data-triplet|

given one data point, the other two are determined. Then, with these tables in place, and

starting with arbitrary values of energy density, either a corresponding value of temperature

or of electron density can be found by interpolating between the values of the appropriate

tables. This is exactly what is done after each call to ZAP. The temperature and electron

density need periodic updating so ZAP can function properly when it is next called. The

program therefore updates TE(J) and DENSITY(J) by calling respectively the subroutines

LOOKUPT and LOOKUPN. It is in these subroutines where the interpolations between

values of the tables take place. LOOKUPT interpolates between values of energy density,

UTABLE,|the X axis|and values of temperatue, TTABLE,|the Y axis. Similarly for

A-2

LOOKUPN, where UTABLE is the X axis and the free electron density, NTABLE, is the

Y axis.

Starting with the call to GENERATELOOKUP and with the values of � as input,

the subroutine begins by partitioning a range of temperature values from 0.1 eV to 25 eV

into 512 evenly spaced time divisions. The program then calculates ne at each data point

by solving the following four simultaneous equations:

ne = n1 + 2n2 + 3n3; (A.7)

ne =
ng
n1
a(t); (A.8)

ne =
n1
n2
b(t); (A.9)

ne =
n2
n3
c(t); (A.10)

where

a = (2:4E15)t
3

2 exp

�
��1

(8:617E � 5)t

�
; (A.11)

b = (2:4E15)t
3

2 exp

�
��2

(8:617E � 5)t

�
; (A.12)

c = (2:4E15)t
3

2 exp

�
��3

(8:617E � 5)t

�
; (A.13)

t is the temperature in degrees Kelvin and ng is the number of ground-state molecules, so

that

ng = n0 � n1 � n2 � n3: (A.14)

n0 equals the number of neutral molecules, n1 equals the number of singly ionized molecules,

n2 equals the number of doubly ionized molecules, and n3 equals the number of triply ion-

ized molecules. Equations A.10 to A.12 together with their a, b and c coe�cients comprise

three SAHA equations, each governing their respective z/z-1 level ratios. We now have

four equations in four unknowns.

Solving this system and simplifying leads to a quartic equation in ne,

n4e + (a)n3e + (ab� an0)n
2

e + (abc� 2abn0)ne � 3abcn0 = 0: (A.15)

A-3

For each value of the subroutine's loop counter, TTABLE is loaded based on the above de-

�ned partition. Next, Find ne solves for the positive, real root of the quartic and NTABLE

is loaded with that number. From the current NTABLE value, n1, n2 and n3 are solved

and from these solutions, the current value of UTABLE is loaded. The result is that all

three arrays are loaded at once during each cycle of the loop and hence are coupled, as

required by the physics. They are now ready for interpolating.

The portion of the program which creates the tables follows:

! Generatelookup is a routine that creates the lookup tables. The three

! values for chi are read in and the program enters a loop, calculating

! values for n1, n2, n3, and ne. Variables are as follows:

! chi(3): an array holding the values of chi

! ntable: an array holding the values of n1 for the different temps.

! n1 : the instantaneous value of n1

! n2 : the instantaneous value of n2

! n3 : the instantaneous value of n3

! a,b,c : functions of temperature

! t : the temperature in Kelvin

! tev : the temperature in eV

! ttable: an array containing the varying temperatures

! utable:

! npts : number of data points to calculate

! starttev: starting temperature in eV

! finaltev: ending temperature in eV

! tevincr : temperature increment, in eV

! evtojoule: constant

! const : a constant

! kev : a constant

! n : a constant

! k : a constant

! i : loop variable

! Something to note is that while the value of ne is recorded for each

! temperature in ntable, the values of n1, n2, and n3 are not kept for

! each temperature.

SUBROUTINE generatelookup(n0, chi)

IMPLICIT none

REAL*8 chi(3)

REAL*8 ntable,utable,ttable

REAL*8 const, kev, tev, starttev, finaltev, tevincr

REAL*8 evtojoule, t, k, n0

REAL*8 a, b, c, n1, n2, n3

COMMON /LINE6/ utable(512), ttable(512), ntable(512)

A-4

INTEGER i,npts

PARAMETER(kev = 8.617d-5, evtojoule = 1.602d-19)

PARAMETER(const = 2.4d15, npts = 512, k = 1.38d-23)

starttev = .1

finaltev = 25

tevincr = (finaltev - starttev)/npts

tev = starttev

DO i = 1, npts

t = tev/kev ! t in Kelvin!

a = const*(t**1.5)*dexp(-chi(1)/(t*kev))

b = const*(t**1.5)*dexp(-chi(2)/(t*kev))

c = const*(t**1.5)*dexp(-chi(3)/(t*kev))

ttable(i) = tev

CALL find_ne(a, b, c, n0, ntable(i))

n1 = (n0*ntable(i)**2)/((ntable(i)**3)/a + ntable(i)**2 + &

b*ntable(i)+ b*c)

n2 = b*n1/ntable(i)

n3 = c*n2/ntable(i)

utable(i) = evtojoule*(n1*(chi(1) + 3./2.*tev) &

+n2*(chi(1) + chi(2) + 6.*tev) &

+n3*(chi(1) + chi(2) + chi(3) + 9./2.*tev))

tev = tev + tevincr

END DO ! end of i loop

RETURN

END SUBROUTINE generatelookup

!---

! The subroutine, find_ne, calls zroots to find the 4 roots.

! Its task is to take the three parameters a, b, c and determine

! from them the coefficients of the quadratic equation. Once

! it receives the 4 roots it eliminates all but the positive, real

! ones and then sends those back. Variables are as follows:

! a, b, c: functions of temperature passed to this routine.

! ntable_real: array holds values of ne returned to the

! calling routine. They will be positive and real, hence the

! name ntable_real.

! ntable: the values of n1 returned by zroots.

! Some of these may be complex or negative.

! coef: an array that holds the values of the coefficients of

! the quadratic equation. coef(1) is the constant term, coef(2)

! is the coefficient of the 1st order term, etc.

! n0 : a constant also used in determining the values of ne

SUBROUTINE find_ne(a, b, c, n0, ntable_real)

REAL*8 a, b, c, n0 !used to determine the coefficients

REAL*8 ntable_real !the real roots

COMPLEX*16 coef(5) !the coefficients

A-5

COMPLEX*16 netable(4) !array holding roots returned from

!zroots

coef(1) = dcmplx(-3*a*b*c*n0)

coef(2) = dcmplx(a*b*c - 2*a*b*n0)

coef(3) = dcmplx(a*b - a*n0)

coef(4) = dcmplx(a)

coef(5) = dcmplx(1)

CALL zroots(coef, 4, netable, .false.)

!FILTER OUT ONLY VALUES OF Ne WHICH ARE POSITIVE AND REAL

DO i = 1, 4

IF (imag(netable(i)) == 0 .AND. real(netable(i)) > 0) &

ntable_real = dreal(netable(i))

END DO

RETURN

END SUBROUTINE find_ne

!---

! The subroutine, zroots, is a driver subroutine.

! It calls LAGUER to find the roots of a polynomial equation.

! m is the degree of the equation, and a is an array containing

! the m+1 coefficients (m coefficients and 1 const. term).

! a(1) = the constant term, a(2) is the coefficient of x^1, etc.

! "roots"= array containing all the roots, complex or otherwise.

! "polish" = logical variable that determines if the roots will

! be polished infinitely well (true) or only to the desired

! precision (false). The desired fractional precision is set

! by eps. "maxm" is the maximum degree the equation can have.

! zroots does the following: it calls laguer multiple times to

! find all the roots of the equation; then it sorts the roots

! for the real one.

SUBROUTINE zroots(a, m, roots, polish)

IMPLICIT none

REAL*8 eps

COMPLEX*16 a(10), roots(4), ad(10), x, b, c, root

INTEGER i,j,jj,m,maxm

LOGICAL polish

PARAMETER (eps=1.E-3, maxm=101)

DO 11 j = 1, m+1

ad(j) = a(j)

11 CONTINUE

DO 13 j = m, 1, -1

x = dcmplx(0.0, 0.0)

CALL laguer(ad, j, x, eps, .false.)

IF (abs(imag(x)) <= 2.0*eps**2*abs(dreal(x))) &

x = dcmplx(dreal(x), 0)

roots(j)= x

A-6

b = ad(j+1)

DO 12 jj = j, 1, -1

c= ad(jj)

ad(jj) = b

b = x*b + c

12 CONTINUE

13 CONTINUE

IF (polish) THEN

DO 14 j= 1,m

root = roots(j)

CALL laguer(a,m,root, eps,.true.)

14 CONTINUE

ENDIF

RETURN

END SUBROUTINE zroots

A-7

Appendix B. The Timestep Calculation

B.1 Factors In
uencing Choice of Time Step

Several factors in
uenced the choice of time step for the simulation. The �rst might

be called an operational factor, since the decision depended more or less on trial and error.

But, rather than being completely arbitrary, the original width used in the old code seemed

a reasonable starting point. The second factor involved the shape of the input pulse. If the

pulse were linear (a ramp or a square-shaped pulse, for example) equal time steps would

be appropriate since the pulse maintains a linear pro�le throughout its history enforcing a

democratic partition: no part of the input can a�ord to be missed. The shape of the input

pulse to the present computer model, however, is gaussian. This shape was chosen because

it can be generated relatively easily in a separate computer program. A real input, however,

will be a Q-switched pulse (see Figure B.1). In that case, any given layer will experience

a rapidly expanding plasma at its beginning with a more moderately changing response

near the end of its lifetime. The rapidly varying interaction dynamics at the beginning of

the pulse dictates smaller time steps there. The interaction, however, tends to equilibrate

after only a few ps, thereby allowing a more coarse sampling rate as time proceeds. The

nature of the algorithm, however, prevented using a truly nonlinear partition scheme. As

the computation progressed through more and more layers, it became apparent that the

time bins at later times were being \compressed" toward the origin before the simulation

�nished. Consequently, it was decided to divide the pulse into evenly spaced time domains

and have each successive time domain have fewer total time bins. This increased the

number from 2,500 to over 10,000. The e�ciency of the new program, however, has not

been degraded appreciably.

The third factor in the choice of time step involved the physics of plasma initiation

itself. After approximatly 600 ps, the plasma quits di�using and the response mechanism

isn't changing very rapidly. This further validates the need to rapidly sample the pulse

within the �rst few nanoseconds after plasma ignition.

B-1

Pulse Time (ns)0

Pulse
Energy

Pulse WIdth

27

 9 ns

Figure B.1 The sharp rise time of the input Q-switched laser pulse dictates a nonlinear
time partition at the beginning to capture and sustain the critical physics of
scattering and absorption.

B.2 Estimation of Initial Time Step

With the above factors in mind, we can then estimate the size of the �rst time step.

The governing equation is

r2 = 6Dt; (B.1)

where r is the plasma radius andD is the di�usion coe�cient (assumed here to be constant).

In the computer code, a is the plasma radius and a0 is the plasma radius at the initial

time.

Next, taking the derivative, we have

2r�r = 6D�t; (B.2)

or

�r =

s
3D

2t
�t: (B.3)

To capture the essential plasma physics, it is desirable to have �r � r. (See Figure B.2).

B-2

r

∆r

Figure B.2 In the �rst time step, the plasma expands from r to r + �r.

The plasma must \experience" input at a very high rate during this initial expansion

phase lest it cool below its critical, self-sustaining temperature. In e�ect, the wait time

for the next input should not exceed approximately 1 ps, which has been determined

operationally through experience with the older code.

The e�ective plasma velocity, Veff , is

Veff =
�r

�t
=

3D

r
: (B.4)

We need to choose �t such that �r � a0. We have a0 � 20 nm = 20 � 10�7 cm. Select

�r < 2 nm = 2 � 10�7 cm or r1 (for the �rst time step) < 20 + 2 = 22 nm = 2:2� 10�7

cm. Then

(22� 10�7)2 = 6Dt1; (B.5)

where D is approximately 0.7 cm2/sec. Now,

�r

�t
=

3D

r
; (B.6)

or

�t1 =
40� 10�14

2:1
= 2� 10�13: (B.7)

Therefore, pick �t1 < 0:2 ps. Choose 0.1 ps as the �rst time step.

B-3

Appendix C. Partial Code Listing

The following is a partial listing of the FORTRAN simulation code used for this

thesis project and contains the code for the \A", \B" and \C" loops as well as the code

for the ZAP subroutine. The \USE" construction is a Fortran 90 feature which allows

the main program to \see" the contents of a separate module, in this case the module

\PZ DATA," which follows immediately below.

MODULE PZ_DATA

INTEGER,PARAMETER::REAL8=SELECTED_REAL_KIND(15,307)

INTEGER,PARAMETER::N=20!NUMBER OF LAYERS SAMPLED.

INTEGER,PARAMETER::P=20!NUMBER OF PROCESSORS.

REAL(REAL8),PARAMETER::LL=1000E-4 !SAMPLE LENG(CMS).

REAL(REAL8),PARAMETER::LAMBDA=532E-7!WAVLNGTH(CMS).

REAL(REAL8),PARAMETER::DELTA_L=50E-4!IN CMS(50 MICRONS).

REAL(REAL8),PARAMETER::FNOIN=5. !INPUT F/# OF OPTICS.

REAL(REAL8),PARAMETER::PI=3.141592

REAL(REAL8),PARAMETER::n1=1.36

REAL(REAL8),PARAMETER::SPOT_SIZE=5.*FNOIN*LAMBDA/PI

REAL(REAL8),PARAMETER::RAY_RANGE=4.*LAMBDA*(FNOIN**2)/PI

REAL(REAL8),PARAMETER::bb=LL/FNOIN

REAL(REAL8),PARAMETER::BM_RAD=bb/2.!INPUT BEAM RADIUS.

TYPE POLAR

REAL(REAL8)::LENGTH

REAL(REAL8)::ANGLE

END TYPE POLAR

TYPE(POLAR),DIMENSION(0:P,N)::GRID

REAL(REAL8)::DELTA,TEM,LENGTH

REAL(REAL8),DIMENSION(0:30)::LENG,AREA,RAD,HH

!LENG()HOLDS ACCUM LENGTH VALUES STARTING AT LEFT.

!AREA()HOLDS AREA OF EACH LAYER.

!RAD()HOLDS RADIUS OF EACH LAYER.

!DEL()HOLDS DIST BETWEEN THE LAYERS IN RAY_RANGE.

!HH()HOLDS DIST BETWEEN LAYERS THROUGHOUT SAMPLE.

END MODULE PZ_DATA

The main program follows next.

C-1

PROGRAM ss313

USE PZ_DATA

IMPLICIT NONE

!**

! MUST ADD 0.1 J TO THE INTEGRATED INPUT AND OUTPUT

! FLUENCES.

!**

REAL*8 a0, absu, aratio, asratio, bremss, begin

REAL*8 cangle, choice, chi(3), chiic, crit

REAL*8 dconst,diff,e1, endtime, epulse,ethamu, evtojoule

REAL*8 F1, Fc, Fj, fnoout, Ftot

REAL*8 gamma, h, home_stretch, hyp

REAL*8 I1, initdens, initenergy, inittemp, initu

REAL*8 kb, kev

REAL*8 np, nuc,n0c, n0e, n0n, nucconst

REAL*8 plttime,pulsewidth, p0,q,rr,rrr

REAL*8 start, TH, THETA, thetamax,time,timex,t0, tev, tps

REAL*8 u0, width, x, xx, yy, zz, zr

REAL*8 FRAC1, FRAC2,FO_XX,FO_YY,FO_ZZ

REAL*8 TK1,TK2,TQ1,TQ2

INTEGER I, J, JJ, K, KK, L, NUM

INTEGER R, S, V, COUNT

INTEGER ENDK

INTEGER npts, rpts

INTEGER tstop

INTEGER KQ,KKQ

INTEGER KSUM

LOGICAL FLAG

CHARACTER(LEN=40) bubble_file, pulse_file

!---

! ARRAYS THAT ARE A FUNCTION OF INDEX J (layer)

!---

REAL*8 dia(31),deltaz(31),zaxis(31)

REAL*8 Ij(31),tau(31),te(31),FRAC(31)

REAL*8 az(31),density(31),energyz(31)

REAL*8 solidw(31),update(31),uz(31)

INTEGER, DIMENSION(0:N) :: u

C-2

INTEGER, DIMENSION(30) :: U2

INTEGER, DIMENSION(30) :: UU2

REAL*8, DIMENSION(3,3) :: SCAT_MAT

!--

! ARRAYS THAT ARE A FUNCTION OF INDEX K (time)

!--

REAL*8 del(10500), deltat(10500), Fout(10500)

REAL*8 Ifocus(10500), Pinc(10500)

REAL*8 t(10500), rbubr(10500)

REAL*8 tb(10500), rbub(10500)

REAL*8 Pshape(10500), temp(10500)

!--

! ARRAYS THAT ARE A FUNCTION OF I(intensity)

!--

REAL*8 ntable(512), ttable(512), utable(512)

!--

! ARRAYS THAT ARE A FUNCTION OF J, K

!--

REAL*8, DIMENSION(31,10500) :: Fin, Isfocus, ITEMP

REAL*8, DIMENSION(31,10500) :: PPSHAPE

REAL*8, DIMENSION(31,10500) :: RRBUBR

REAL*8, DIMENSION(31,10500) :: muiso,muplas

!--

! DEFINING DERIVED DATA TYPES

!--

TYPE energy

REAL*8 :: value

REAL*8 :: time

END TYPE energy

TYPE(energy),DIMENSION(30,10500) :: Iin, IO, FO

!--

! FUNCTIONS USED BY MAIN PROGRAM

!--

REAL*8 :: INTERP, LOOKUPN, LOOKUPT

!--

! COMMON BLOCKS

!--

COMMON /LINE1/ a0,bremss,crit,dconst,ethamu,h,I1,kev,nuc

COMMON /LINE2/ nucconst,n0n,plttime,q,thetamax,time,x

COMMON /LINE3/ az,density,deltaz,dia,energyz

COMMON /LINE4/ solidw,tau,te,uz

COMMON /LINE5/ muplas,muiso,rrbubr

COMMON /LINE6/ utable,ttable,ntable

COMMON /LINE7/ np

C-3

COMMON /LINE8/ deltat,rbubr

!--

! PARAMETERS

!--

!noe = initial electron density; kb is Boltzman's constant

PARAMETER(t0 = 5.9d3) !vapor pt of seed mat'l;may + a little

PARAMETER(tps = 2499, tstop = 50)

PARAMETER(n0c = 1d22, n0e = 1.2d20, kb = 1.38d-23)

PARAMETER(evtojoule = 1.602d-19)!const for conv of eV to J

!--

! INITIAL VALUES OF CONSTANTS

!--

chiic = 4.3 !work function for seed material

!may no longer be used

!(used to get initial energy density)

p0 = 1d9

pulsewidth = 10d-9 !laser pulse width

npts = 512

start = 0 !hvp

kev = 8.617d-5 !conversion constant from eV to Kelvin

e1 = n1**2 !Re[dielectric constant] of liquid

ethamu = 46.0 !amu of ethanol; change for each liquid

n0n = 1d22 !number density of liquid molecules

nucconst = 1.8d15 !const to get electron collision fre'cy

!--

! FORMAT STATEMENTS

!--

6 FORMAT(f8.3,',',f8.3)

8 FORMAT(a40)

9 FORMAT(f8.3,',',3e20.7)

10 FORMAT(a10)

15 FORMAT(a35,f15.4)

18 FORMAT(a35,e15.4)

17 FORMAT(a35,i15)

12 FORMAT(1x,3e20.7)

28 FORMAT(1x,'Pulse width =',a4,' ns')

29 FORMAT(a10,1e10.3)

31 FORMAT(a10,a2,f10.2)

41 FORMAT(1x,'Enter your choice:',i3,',',i3,','' or 0 for same')

51 FORMAT(' ',A3,1X,G12.6,1X,G12.6,1X,G12.6,1x,G12.6,1x,G12.6,1X,G12.6,1X,G12.6)

53 FORMAT(' ',A3,1X,G12.6,1X,G12.6,1X,G12.6)

120 FORMAT(1x,' density = ',1e19.5)

121 FORMAT(1x,' density = ',1e19.5,' Transmission = ',1e19.5)

122 FORMAT(1x,2e20.10)

123 FORMAT(1x,3e20.10)

C-4

130 FORMAT(1x,'Calculating Input Fluence : ',f10.3,' J/cm^2')

OPEN(unit = 81, file = 'den1.dat', status='unknown')

!---

! INITIAL SAVED CONSTANTS

!---

! a0 = particle size

! gamma = ratio of heat cap at const vol to hc at const press

! fnoin = the f/number of the input optics

!fnoout = the f/number of the output optics

! np = initial particle density

!dconst = diffusion constant

! mult = constant

! h = constant in diffusion algorithm

! width = laser pulse width

!chi(n) = ionization potentials of the liquid

!epulse = laser pulse energy

WRITE(*,*) 'Single Shot Version: press RETURN to continue.'

READ(*,*)

OPEN(unit = 10, file = 'ssdata.dat', status = 'old')

!---

! READ IN CONSTANTS

!---

REWIND(10)

READ(10,*) a0

READ(10,*) gamma

READ(10,*) fnoout

READ(10,*) np

READ(10,*) dconst

READ(10,*) h

READ(10,*) x

READ(10,*) width

READ(10,*) chi(1)

READ(10,*) chi(2)

READ(10,*) chi(3)

READ(10,*) epulse

CLOSE(10)

5 CONTINUE

!---

! DISPLAY CONSTANTS TO SCREEN

!---

WRITE(*,*) ' a0 = ',a0

WRITE(*,*) ' gamma = ',gamma

WRITE(*,*) 'fnoout = ',fnoout

C-5

WRITE(*,*) ' np = ',np

WRITE(*,*) 'dconst = ',dconst

WRITE(*,*) ' h = ',h

WRITE(*,*) ' x = ',x

WRITE(*,*) ' width = ',width

WRITE(*,*) 'chi(1) = ',chi(1)

WRITE(*,*) 'chi(2) = ',chi(2)

WRITE(*,*) 'chi(3) = ',chi(3)

WRITE(*,*) 'epulse = ',epulse

WRITE(*,*)

WRITE(*,*) 'The input numbers: press RETURN to continue.'

READ(*,*)

!---

! CALCULATING THE NONLINEAR TIME PARTITION

! ENDTIME = 2.72711E-08 ns.

!---

! DO K = 1, 2000

! DELTAT(K) = 1.00E-14

! ENDDO

! DO K = 2001, 3000

! DELTAT(K) = 1.50E-13

! ENDDO

! DO K = 3001, 4000

! DELTAT(K) = 3.50E-13

! ENDDO

! DO K = 4001, 5000

! DELTAT(K) = 7.50E-13

! ENDDO

! DO K = 5001, 6000

! DELTAT(K) = 2.00E-12

! ENDDO

! DO K = 6001, 7000

! DELTAT(K) = 3.50E-12

! ENDDO

! DO K = 7001, 8000

! DELTAT(K) = 5.50E-12

! ENDDO

! DO K = 8001, 9000

! DELTAT(K) = 7.50E-12

! ENDDO

! DO K = 9001, 10000

! DELTAT(K) = 9.00E-12

! ENDDO

! TIME = 0.0

C-6

! DO K = 1, 10000

! TIME = TIME + DELTAT(K)

! write(*,*)'ttt',k,deltat(k),del(k),time

! write(*,*)'ttt',k,deltat(k)*1E+10,del(k)*1E+10,time

! IF(TIME > ENDTIME)EXIT

! ENDDO

KSUM = 10000

! WRITE(*,*) 'Calculated time and ENDTIME:',TIME,ENDTIME

!---

!SELECTING THE INPUT FILE CONTAINING THE ENERGY

! OF THE INCIDENT PULSE

!---

l = 1

IF (width.eq.9) THEN

pulse_file = 'gaussinput_10000'

! pulse_file = 'qs9.25t'

! pulse_file = 'const_temp_k.in'

ELSEIF (width .eq. 35) THEN

pulse_file = 'PULSE35.035'

ELSEIF (width .eq. 50) THEN

pulse_file = 'ps50n.dat'

ELSE

WRITE(*,*) 'pulse shape not available for width'

STOP

END IF

!---

! FILLING THE TEMP AND PSHAPE ARRAYS.

! DEL AND PINC ARRAYS ARE FOR TAU CALCUATION LATER.

!---

TEMP(1) = 0.0

DELTAT(1) = 1.0D-14

! DEL(1) = 2.3D-14

OPEN(UNIT = 14, FILE = pulse_file, STATUS = 'old')

REWIND(14)

READ(14,*) NUM

DO K = 1, NUM

READ(14,*) TEMP(K), PSHAPE(K)

IF(K > 1) DELTAT(K) = TEMP(K) - TEMP(K-1)

PINC(K) = EPULSE * PSHAPE(K)

ENDDO

CLOSE(14)

ENDK = K - 1

! ENDTIME = TEMP(ENDK)

ENDTIME = 2.72711E-08!value taken from file qs9.25t.

!---

C-7

! EXPLANATION OF GRIDFILL

!---

!GRIDFILL CONTAINS THE MECHANICS FOR CALCULATING THE RADIUS

!AND AREA OF EACH PRIMARY ZONE (PZ) LAYER AND THEIR INTERVEN-

!ING DISTANCES AND THE POLAR COORDINATES OF THE TRIANGULAR

!GRID WHICH DISCRETIZES THE PZ. J COUNTS THE LAYERS STARTING

!FROM NO 1 ON THE RIGHT EDGE.

CALL GRIDFILL

!FILL A 3 X 3 ARRAY WITH NUMBERS THAT MIMIC SCATTERING. THE

!ARRAY'S ENTRIES CORRESPOND TO NINE PAIR COMBINATIONS WHICH

!RESULT FROM THREE INPUTS MAPPED TO THREE OUTPUTS. RESHAPE

!IS A FORTRAN 90 INTRINSIC. SCATTERING NUMBERS IN THE ARRAY

!ARE HARDWIRED FOR NOW...

!---

! CALUCULATING THE SOLID ANGLE FOR EACH LAYER.

!---

!SOLIDW = array holding values of solid angles--layer depend.

!DIA = the diameter of each layer, computed from RAD(J)

!CANGLE = the value of the cosine of the linear angle

!HYP = the hypotenuse of the triangle

THETAMAX = ASIN(1./(2.*fnoout)) !maximum collection angle!

!FORMULA FOR SOLIDW(N) DERIVED USING SERIES APPROXIMATION

!FOR 1/(1+X) WHERE X = TAN^2(X) BECAUSE COS^2(X) = 1/(1+TAN^2(X)

!AND TAN(X) EQUALS 1/2*f/#OUT. THE SOLID ANGLE FOR EACH SUBSEQ

!LAYER USES 2*PI*(1-COS(theta)) WHERE COS(theta) IS FOUND MORE

!DIRECTLY USING HH AND HYP OF THE LINEAR ANGLE BEWTEEN LAYERS.

!HH() ARRAY HAS ALREADY BEEN CALC IN PZ DATA AND HOLDS DIST

!BETWEEN LAYERS.

!SOLIDW(1) = 2.*PI*(1-SQRT(1-.25/fnoout**2+1./(16.*fnoout**4)))

DIA(1) = 2. * RAD(1)

DO J = 2, N

DIA(J) = 2. * RAD(J)

! HYP = SQRT((HH(J+1)**2)+(RAD(J+1)**2))

HYP = SQRT((HH(J)**2)+(RAD(J)**2))

! CANGLE = HH(J+1)/HYP

CANGLE = HH(J)/HYP

SOLIDW(J) = 2.*PI*(1.- CANGLE)

END DO

SOLIDW(1) = SOLIDW(2)

!--

C-8

! INITIAL ENERGY DENSITY AT PLASMA INITIATION

! T0 IS INITIAL TEMP; U0 IS ENERGY DENSITY.

!--

U0 = (CHIIC + (3./2.)*KEV*T0)*N0E*EVTOJOULE

INITENERGY = U0*4./3.*PI*A0**3 !ENERGY IN EACH PLASMA CENTER.

!--

! SAHA TABLES

!--

DO I = 1, NPTS !NPTS = 512

UTABLE(I) = 0.0

NTABLE(I) = 0.0

TTABLE(I) = 0.0

END DO

CALL GENERATELOOKUP(1D22, CHI)

INITU = (CHIIC+3./2.*KEV*T0)*N0E*EVTOJOULE

INITTEMP = T0

INITDENS = 7.0D18

WRITE(*,*) 'Init Temperature =',INITTEMP

WRITE(*,*) 'Init Density =',INITDENS

!---

! FILLING BUBBLE TIME AND BUBBLE GROWTH ARRAYS, TB() AND RBUB().

!---

bubble_file = 'bub80c3.dat'

OPEN(UNIT = 7, FILE = bubble_file, STATUS = 'old')

REWIND(7)

I = 1

READ(7,*) NUM

DO WHILE (I <= NUM)

READ(7,*) TB(I), RBUB(I)

I = I + 1

ENDDO

CLOSE(7)

RPTS = I - 1

!---

! SCATTERING MATRIX

!---

SCAT_MAT = RESHAPE(SOURCE=(/.10,.30,.60,.25,.75,.25,.60,.30, &

.10/), SHAPE = (/3,3/))

!---

! CALCULATING TAU

!---

C-9

!EACH LAYER NEEDS TO HAVE ASSIGNED TO IT ITS OWN TAU, THE TIME

!TO REACH ITS CRITICAL FLUENCE ,FC, WHICH IS SET AT 0.1 JOULE.

DO J = N, 1, -1

FTOT = 0.0

FC = 0.1 !FC = PROPERTY OF CARBON; SAME FOR EACH LAYER.

! TIME = 0.0

K = 1

!NEXT DO LOOP CRUDELY INTEGRATES INTENSITY. IJ HOLDS ITENSITY

!FOR EACH LAYER. FJ UPDATES FTOT FOR EACH COUNT OF K.

DO WHILE(FTOT < FC) !WHEN TOTAL FLUENCE = FC, EXIT DO LOOP.

IJ(J) = PINC(K)/AREA(J)

FJ = IJ(J) * DELTAT(K)

FTOT = FTOT + FJ

! TIME = TIME + DELTAT(K)

IF(K < ENDK) K = K + 1

ENDDO

TAU(J) = TEMP(K) !TEMP(K) HOLDS TIME VALUE,TAU(J),

UU2(J) = K !FOR LAYER J TO REACH ITS CRITICAL

!FLUENCE.

ENDDO

!---

!AA LOOP FILLS EACH LAYER'S ARRAY WITH INTERPOLATED VALUES.

!---

AA: DO J = N, 1, -1

TIME = TAU(J)

FLAG = .TRUE.

IF(J == N)THEN

FIRST:DO I = UU2(J), KSUM

PPSHAPE(J,I) = Pshape(I)

ISFOCUS(J,I) = Pinc(I)/AREA(1)

U2(J) = I

TIME = TIME + DELTAT(I)

IF(TIME > ENDTIME)EXIT

END DO FIRST

ELSE IF(J .NE. N)THEN

SECOND:DO I = UU2(J), KSUM

PPSHAPE(J,I) = Pshape(I)

ISFOCUS(J,I) = Pinc(I)/AREA(1)

IF(TIME > TAU(J+1) .AND. FLAG)THEN

U2(J) = I - 1

FLAG = .FALSE.

END IF

TIME = TIME + DELTAT(I)

IF(TIME > ENDTIME)EXIT

END DO SECOND

C-10

END IF

END DO AA

!--

! REINITIALIZE ARRAYS AT THE BEGINNING OF EACH SHOT.

!--

TIME = 0.0

DO J = 1, N

UZ(J) = U0

ENERGYZ(J) = INITENERGY

AZ(J) = A0

TE(J) = INITTEMP !INITIAL TEMPERATURE

DENSITY(J) = INITDENS !INITIAL ELECTRON DENSITY

END DO

!--

! REINITIALIZE CONSTANTS AT THE BEGINNING OF EACH SHOT.

!--

TEV = TE(J-1)*KEV !TEMP IN eV

DIFF = DCONST*(SQRT(TEV)+X*TEV**H)!CALC DIFF CONSTANT

CRIT = (3./(4.*PI*NP))**(1./3.) !PLMA VOL = LATT VOL.

NUC = NUCCONST

!--

! MAIN LOOP OF REVISED TIME AND LAYER ACTIVATION SCHEME.

!--

OPEN(unit = 43, file = 'results', status = 'OLD')

!---

MAIN: DO J = N, 1, -1

!-----ADJUSTING TIME SCALE FOR THE BUBBLE FILE--------------

!-----------------WITH EACH NEW J---------------------------

TIME = 0.0

K = 1

DO KK = UU2(J), KSUM !KSUM = 10000

R = 2

DO WHILE ((R < RPTS) .AND. (TB(R) <= TIME))

R = R + 1

END DO

IF(R <= RPTS)THEN

RBUBR(K) = INTERP(RBUB(R-1),RBUB(R),TB(R-1),TIME,TB(R))

ELSE

RBUBR(K) = RBUBR(K-1)

END IF

TIME = TIME + DELTAT(KK)

K = K + 1

END DO

!---

K = 1

C-11

TIME = TAU(J)

ASRATIO = AREA(1)/AREA(J)

ARATIO = AREA(J+1)/AREA(J)

!---

IF(J == N)THEN !FIRST LAYER IS UNIQUE: NO NEIGHBOR INPUTS.

!---

!-------------LOOP "A" FOR LAYER 20 ONLY--------------------

A: DO I = UU2(J), KSUM !I indexes into some point in the

!pulse profile. K must start at one when layer turns on.

K = I - UU2(J) + 1

I1 = ISFOCUS(J,I)*ASRATIO

F1 = I1*DELTAT(I)

PLTTIME = TIME * 1E+09

CALL ZAP(J,K,F1)

IO(J,I)%value = I1*DEXP(-MUPLAS(J,K)*HH(J)) &

*DEXP(-MUISO(J,K)*HH(J))

IO(J,I)%time = TIME

Iin(J-1,I)%value = IO(J,I)%value

Iin(J-1,I)%time = IO(J,I)%time

TE(J) = LOOKUPT(UZ(J),UTABLE,TTABLE)

DENSITY(J) = LOOKUPN(UZ(J),UTABLE,NTABLE)

FO(J,I)%value = IO(J,I)%value*DELTAT(I)

FO(J,I)%time = IO(J,I)%time

IF(FO(J,I)%value < 1E-13) FO(J,I)%value = 0.00

TIME = TIME + DELTAT(I)

IF(TIME > ENDTIME)EXIT

END DO A

!---

ELSE IF (J < N .AND. J > 1) THEN

!---

TQ1 = TAU(J) !TQ2-TQ1="PROBE INTVL" : LAYER J.

TQ2 = TQ1 + DELTAT(1)

!----------------LOOP "B"-----------------------------------

B: DO KQ = UU2(J), UU2(J+1)

K = KQ - UU2(J) + 1

I1 = ISFOCUS(J,KQ)*ASRATIO

F1 = I1*DELTAT(KQ)

PLTTIME = TIME * 1E+09

CALL ZAP(J,K,F1)

IO(J,KQ)%value = I1*DEXP(-MUPLAS(J,K)*HH(J)) &

*DEXP(-MUISO(J,K)*HH(J))

IO(J,KQ)%time = TIME

Iin(J-1,KQ)%value = IO(J,KQ)%value

Iin(J-1,KQ)%time = IO(J,KQ)%time

TE(J) = LOOKUPT(UZ(J),UTABLE,TTABLE)

C-12

DENSITY(J) = LOOKUPN(UZ(J),UTABLE,NTABLE)

FO(J,KQ)%value = IO(J,KQ)%value*DELTAT(KQ)

FO(J,KQ)%time = IO(J,KQ)%time

!---

IF(KQ == UU2(J+1))THEN

!---

XX = TAU(J+1)-TQ1 !XX IS THE LAST BIT OF "FREE" INPUT INTO LAYER J.

I1 = ISFOCUS(J,KQ)*ASRATIO

F1 = I1*XX

CALL ZAP(J,K,F1)

IO(J,KQ)%value = I1*DEXP(-MUPLAS(J,K)*HH(J)) &

*DEXP(-MUISO(J,K)*HH(J))

IO(J,KQ)%time = TIME

Iin(J-1,KQ)%value = IO(J,KQ)%value

Iin(J-1,KQ)%time = IO(J,KQ)%time

TE(J) = LOOKUPT(UZ(J),UTABLE,TTABLE)

DENSITY(J) = LOOKUPN(UZ(J),UTABLE,NTABLE)

FO(J,KQ)%value = IO(J,KQ)%value*XX

FO(J,KQ)%time = IO(J,KQ)%time

!--

END IF

!--

TQ1 = TQ2

TQ2 = TQ2 + DELTAT(KQ+1)

TIME = TQ1

PLTTIME = TIME*1E+09

END DO B

!--

KK = UU2(J+1) !KK = Layer J+1's time counter.

TK1 = TAU(J+1)

TK2 = TK1 + DELTAT(KK)

!----------------LOOP "C"----------------------------

C: DO KQ = UU2(J+1), KSUM

!--

PLTTIME = TIME * 1E+09

DO

IF(TK1 < TQ2 .AND. TK2 > TQ2)EXIT

Fin(J,KQ) = FO(J+1,KK)%value*ARATIO

CALL ZAP(J,K,Fin(J,KQ))

IO(J,KQ)%value = Iin(J,KK)%value*ARATIO &

*DEXP(-MUPLAS(J,K)*HH(J)) &

*DEXP(-MUISO(J,K)*HH(J))

IO(J,KQ)%time = Iin(J,KK)%time

FO(J,KQ)%value = FO(J,KQ)%value + IO(J,KQ)%value*DELTAT(KK)

FO(J,KQ)%time = Iin(J,KK)%time

C-13

Iin(J-1,KQ)%value = IO(J,KQ)%value

Iin(J-1,KQ)%time = IO(J,KQ)%time

TE(J) = LOOKUPT(UZ(J),UTABLE,TTABLE)

DENSITY(J) = LOOKUPN(UZ(J),UTABLE,NTABLE)

TK1 = TK2

TK2 = TK2 + DELTAT(KK+1)

IF(TK1 < TQ2 .AND. TK2 > TQ2)EXIT

K = K + 1

KK = KK + 1

END DO

XX = TQ2 - TK1

YY = TK2 - TQ2

Fin(J,KQ) = ARATIO*FO(J+1,KK)%value*XX/DELTAT(KK)

CALL ZAP(J,K,Fin(J,KQ))

IO(J,KQ)%value = Iin(J,KK)%value*ARATIO &

*DEXP(-MUPLAS(J,K)*HH(J)) &

*DEXP(-MUISO(J,K)*HH(J))

IO(J,KQ)%time = Iin(J,KK)%time

FO(J,KQ)%value = FO(J,KQ)%value + IO(J,KQ)%value*XX

FO(J,KQ)%time = Iin(J,KK)%time

Iin(J-1,KQ)%value = IO(J,KQ)%value

Iin(J-1,KQ)%time = IO(J,KQ)%time

TE(J) = LOOKUPT(UZ(J),UTABLE,TTABLE)

DENSITY(J) = LOOKUPN(UZ(J),UTABLE,NTABLE)

KKQ = KQ + 1

Fin(J,KKQ) = ARATIO*FO(J+1,KK)%value*YY/DELTAT(KK)

! Fin(J,KKQ) = ARATIO*FO(J+1,KK)%value

CALL ZAP(J,K,Fin(J,KKQ))

IO(J,KKQ)%value = Iin(J,KK)%value*ARATIO &

*DEXP(-MUPLAS(J,K)*HH(J)) &

*DEXP(-MUISO(J,K)*HH(J))

IO(J,KKQ)%time = Iin(J,KK)%time

FO(J,KKQ)%value = IO(J,KKQ)%value*YY

Iin(J-1,KKQ)%value = IO(J,KKQ)%value

Iin(J-1,KKQ)%time = IO(J,KKQ)%time

TE(J) = LOOKUPT(UZ(J),UTABLE,TTABLE)

DENSITY(J) = LOOKUPN(UZ(J),UTABLE,NTABLE)

TIME = TIME + DELTAT(KQ)

IF(TIME > ENDTIME)EXIT

TQ1 = TQ2

TQ2 = TQ2 + DELTAT(KQ+1)

TK1 = TK2

TK2 = TK2 + DELTAT(KK+1)

KK = KK + 1

K = K + 1

C-14

END DO C

!---

ELSE IF(J == 1)THEN

!---

TQ1 = TAU(J)

TQ2 = TQ1 + DELTAT(1)

ARATIO = AREA(2)/AREA(1)

!-------------------LAST LAYER------------------------

LAST1:DO KQ = UU2(1), UU2(2) !KQ = LAYER 1 TIME COUNTER

K = KQ - UU2(1) + 1

I1 = ISFOCUS(J,KQ)*ASRATIO

F1 = I1*DELTAT(KQ)

PLTTIME = TIME * 1E+09

CALL ZAP(J,K,F1)

IO(J,KQ)%value = I1*DEXP(-MUPLAS(J,K)*HH(J)) &

*DEXP(-MUISO(J,K)*HH(J))

IO(J,KQ)%time = TIME

TE(J) = LOOKUPT(UZ(J),UTABLE,TTABLE)

DENSITY(J) = LOOKUPN(UZ(J),UTABLE,NTABLE)

FO(J,KQ)%value = IO(J,KQ)%value*DELTAT(KQ)

FO(J,KQ)%time = IO(J,KQ)%time

!--

IF(KQ == UU2(2))THEN

!--

XX = TAU(J+1)-TQ1 !XX IS THE LAST BIT OF "FREE"

!INPUT INTO LAYER J.

I1 = ISFOCUS(J,KQ)*ASRATIO

F1 = I1*XX

CALL ZAP(J,K,F1)

IO(J,KQ)%value = I1*DEXP(-MUPLAS(J,K)*HH(J)) &

*DEXP(-MUISO(J,K)*HH(J))

IO(J,KQ)%time = TIME

TE(J) = LOOKUPT(UZ(J),UTABLE,TTABLE)

DENSITY(J) = LOOKUPN(UZ(J),UTABLE,NTABLE)

FO(J,KQ)%value = IO(J,KQ)%value*XX

FO(J,KQ)%time = IO(J,KQ)%time

!---

END IF

!---

TQ1 = TQ2

TQ2 = TQ2 + DELTAT(KQ+1)

TIME = TQ1

PLTTIME = TIME * 1E+09

END DO LAST1

!--

C-15

KK = UU2(2) !KK = LAYER 2 TIME COUNTER.

TK1 = TAU(2)

TK2 = TK1 + DELTAT(KK)

TIME = TK1

!--

LAST2: DO KQ = UU2(2)+1, KSUM

PLTTIME = TIME * 1E+09

IF(TK1 < TQ2 .AND. TK2 > TQ2)THEN

Fin(J,KQ) = FO(J+1,KK)%value*ARATIO

CALL ZAP(J,K,Fin(J,KQ))

IO(J,KQ)%value =Iin(J,KK)%value*ARATIO &

*DEXP(-MUPLAS(J,K)*HH(J)) &

*DEXP(-MUISO(J,K)*HH(J))

IO(J,KQ)%time = Iin(J,KK)%time

FO(J,KQ)%value = FO(J,KQ)%value + &

IO(J,KQ)%value*DELTAT(KK)

FO(J,KQ)%time = Iin(J,KK)%time

TE(J) = LOOKUPT(UZ(J),UTABLE,TTABLE)

DENSITY(J) = LOOKUPN(UZ(J),UTABLE,NTABLE)

TK1 = TK2

TK2 = TK2 + DELTAT(KK+1)

K = K + 1

KK = KK + 1

END IF

XX = TQ2 - TK1

YY = TK2 - TQ2

Fin(J,KQ) = ARATIO*FO(J+1,KK)%value*XX/DELTAT(KK)

!Fin(J,KQ) = ARATIO*FO(J+1,KK)%value

CALL ZAP(J,K,Fin(J,KQ))

IO(J,KQ)%value=Iin(J,KK)%value*ARATIO &

*DEXP(-MUPLAS(J,K)*HH(J)) &

*DEXP(-MUISO(J,K)*HH(J))

IO(J,KQ)%time = Iin(J,KK)%time

FO(J,KQ)%value = FO(J,KQ)%value + IO(J,KQ)%value*XX

FO(J,KQ)%time = Iin(J,KK)%time

TE(J) = LOOKUPT(UZ(J),UTABLE,TTABLE)

DENSITY(J) = LOOKUPN(UZ(J),UTABLE,NTABLE)

KKQ = KQ + 1

Fin(J,KKQ) = ARATIO*FO(J+1,KK)%value*YY/DELTAT(KK)

!Fin(J,KKQ) = ARATIO*FO(J+1,KK)%value

CALL ZAP(J,K,Fin(J,KKQ))

IO(J,KKQ)%value = Iin(J,KK)%value*ARATIO &

*DEXP(-MUPLAS(J,K)*HH(J)) &

*DEXP(-MUISO(J,K)*HH(J))

IO(J,KKQ)%time = Iin(J,KK)%time

C-16

FO(J,KKQ)%value = IO(J,KKQ)%value*YY

FO(J,KQ)%time = Iin(J,KK)%time

TE(J) = LOOKUPT(UZ(J),UTABLE,TTABLE)

DENSITY(J) = LOOKUPN(UZ(J),UTABLE,NTABLE)

TIME = TIME + DELTAT(KQ)

IF(TIME > ENDTIME)EXIT

TQ1 = TQ2

TQ2 = TQ2 + DELTAT(KQ+1)

TK1 = TK2

TK2 = TK2 + DELTAT(KK+1)

K = K + 1

KK = KK + 1

END DO LAST2

!---

END IF

!---

END DO MAIN

!---

J = 1

TIME = TAU(1)

RESULTS:DO K = UU2(1), KSUM

IF(IO(J,K)%value > 3E+09)IO(J,K)%value = 0.0

WRITE(43,*) K,TIME*1E+09,IO(J,K)%value,Iin(J,K),Fin(J,K)

TIME = TIME + DELTAT(K)

IF(TIME > ENDTIME)EXIT

END DO RESULTS

!Integrate total output intensity to obtain total output

!fluence, adding 0.1 J/cm^2 to allow for plasma initiation

CLOSE(14)

CLOSE(43)

CLOSE(44)

CLOSE(45)

CLOSE(81)

WRITE (*,*) 'ss313 completed'

END PROGRAM ss313

!-------------------------ZAP-------------------------------

SUBROUTINE ZAP(jv,ku,fcell)

USE PZ_DATA

IMPLICIT none

C-17

REAL*8 a0, az(31), absu, alpha

REAL*8 bremss, crit, diff, dconst, deltat(10500)

REAL*8 deltaz(31), density(31), dia(31)

REAL*8 enliq, energya, energyz(31), ethamu

REAL*8 e2p, e2pp, eps2p, eps2pp, evtemp

REAL*8 fluence, fcell, hold

REAL*8 h, I1, iext, kk, kev

REAL*8 muplas(31,10500), muiso(31,10500)

REAL*8 n0n, nueff, np, ntot, nuc, nucconst

REAL*8 ntable(512), plastime, plttime, pwliq

REAL*8 plta(31), pltu(31)

REAL*8 q, qa, rb, rrbubr(31,10500), rbubr(10500), sigiso

REAL*8 sigmaa, sigmasph, solidw(31), stim, stimemiss

REAL*8 tau(31), te(31), thetamax, time, ttable(512)

REAL*8 utable(512), uz(31), vol, x

COMMON /LINE1/ a0,bremss,crit,dconst,ethamu,h,I1,kev,nuc

COMMON /LINE2/ nucconst,n0n,plttime,q,thetamax,time,x

COMMON /LINE3/ az,density,deltaz,dia,energyz

COMMON /LINE4/ solidw,tau,te,uz

COMMON /LINE5/ muplas,muiso,rrbubr

COMMON /LINE6/ utable,ttable,ntable

COMMON /LINE7/ np

COMMON /LINE8/ deltat,rbubr

REAL*8, PARAMETER :: c = 3d10

REAL*8, PARAMETER :: Emin = 2.4e-19 !min elect NRG in Joules!

REAL*8, PARAMETER :: eamu = (1./1837.) !electron mass in amu!

REAL*8, PARAMETER :: elp = n1**2

REAL*8, PARAMETER :: b = ((elp - 1.)/(2.*elp + 1.))**2

INTEGER jv,ku

rb = rbubr(ku)

kk = 2.*pi/lambda

evtemp = te(jv)*kev

alpha = kk*rb

hold = 8./3.*pi*b*kk**4*rb**6

nueff = 2*(eamu/ethamu)*nuc*(evtemp**0.5)

! plastime = (time - tau(jv) + 1.e-12)

plastime = (time - tau(jv) + 1.e-13) !ZAP won't run withou a small

! time increment to get the plasma expansion ball rolling.

! plastime = (time - tau(jv))

vol = (pi/4.)*(dia(jv)**2)*HH(jv)

ntot = np*vol

C-18

!CALCULATION OF LIQUID THERMALIZATION

pwliq = nueff*energyz(jv)

enliq = pwliq*deltat(ku)

!CALCULATION OF THE BUBBLE SCATTERING, ISOTROPIC AND FRAUNHOFF

CALL isotro(hold, solidw(jv), sigiso)

muiso(jv,ku) = sigiso*np

!----ABSORPTION CROSSECTION---(RAYLEIGH REGION)----------------

!----------------------Zapregion1------------------------------

IF (az(jv) .LT. lambda/2.) THEN

eps2p = e2p(density(jv),nuc,lambda) !Re[plasma dielectric constant]!

eps2pp = e2pp(nuc,lambda,te(jv),density(jv))

!Im[plasma dielectric constant]

qa = sigmaa(az(jv),a0,lambda,n1,eps2p,eps2pp,rbubr(ku),jv,ku)

!Rayleigh absorption cross section

stim = stimemiss(lambda,te(jv)) !stimulated emission factor

muplas(jv,ku) = np*(qa*stim)

energya = fcell*qa*stim !absorbed energy per particle

energyz(jv) = energyz(jv)+energya-(enliq/ntot)!-(erad/ntot)

!energy per carbon particle

IF (energyz(jv).LE.Emin) energyz(jv) = Emin

diff = dconst*(sqrt(evtemp) + x*evtemp**h)!calc diff constant

az(jv) = a0 + dsqrt(6.*diff*plastime) !plasma expansion

uz(jv) = energyz(jv)/((4.*pi/3.)*az(jv)**3) !NRG density

!due to expansion

!---------------------Zapregion1--------------------------------

!----INTERMEDIATE REGION--

!---------------------Zapregion2--------------------------------

ELSE IF((az(jv).GT.lambda/2.).AND.(az(jv).LT.CRit)) THEN

sigmasph=(4./3.)*pi*(az(jv)**3 - rbubr(ku)**3 + a0**3) &

((0.106(1/n1)*(nuc/((2.*pi*c/lambda)**2 &

+nuc**2)))*density(jv) + (1.37E-25)*lambda**3 &

/dsqrt(te(jv)*8.617d-5)*(density(jv))**2)

q = sigmasph

stim=stimemiss(lambda,te(jv)) !stimulated emission factor

muplas(jv,ku)=np*(q*stim) !plasma crossection

energya=fcell*q*stim !absorbed energy per particle

energyz(jv)=energyz(jv)+energya-(enliq/ntot) !-(erad/ntot)

C-19

!energy per carbon particle

IF (energyz(jv).LE.Emin) energyz(jv) = Emin

diff=dconst*(sqrt(evtemp)+x*evtemp**h)!calc diff constant!

az(jv)=a0+dsqrt(6.*diff*plastime) !Let plasma center expand!

uz(jv)=energyz(jv)/((4.*pi/3.)*az(jv)**3)

!energy density due to diffusion of electrons!

!--------------------Zapregion2--------------------------------

!---CONTINUUM REGION--(plasma spheres have coalesced)----------

!--------------------Zapregion3--------------------------------

ELSE IF (az(jv) .GE. crit) THEN

bremss = iext(nuc,lambda,n1,te(jv),density(jv)) &

*(1./np - 4.*pi/3.*(rbubr(ku))**3)*np

!Could run into problems when bubble radius exceeds lattice size

stim = stimemiss(lambda,te(jv)) !stimulated emission factor

muplas(jv,ku) = bremss*stim !plasma crossection!

fluence = fcell*(1. - dexp(-bremss*HH(jv)*stim))

!absorbed fluence!

absu = fluence/HH(jv) !Absorbed energy density!

energyz(jv) = energyz(jv) + absu*vol - enliq ! - Erad !

IF (energyz(jv).LE.Emin) energyz(jv) = Emin

uz(jv) = uz(jv) + absu - enliq/vol ! - erad/vol !

IF (energyz(jv).LE.Emin) uz(jv) = 5e-19

ELSE

STOP 'something screwy happened with coelescent limits'

!----------------------Zapregion3--------------------------------

ENDIF

plta(jv) = az(jv)*1e7 !convert units for plasma radius to nm!

pltu(jv) = uz(jv)*1e3 !convert units for energy density to mJ/cm3!

RETURN

END SUBROUTINE ZAP

C-20

Bibliography

1. Brown, S. C. Basic Data of Plasma Physics, 1966, second ed. The M.I.T. Press,
1967.

2. Forster, H. K., and Zuber, N. Growth of a vapor bubble in a superheated liquid.
Journal of Applied Physics 25, 4 (1954), 474{478.

3. Goedert, R., Becker, R., Clements, A., and Whittaker, III, T. Time{
resolved shadowgraphic imaging of the response of dilute suspension to laser pulses.
Journal of the Optical Society of America B 15, 5 (1998), 1442{1462.

4. Jackson, J. D. Classical Electrodynamics. John Wiley & Sons, Inc., 1962.

5. Kerker, M. The Scattering of Light and Other Electromagnetic Radiation, vol. 16 of
Physical Chemistry{A Series of Monographs. Academic Press, New York, 1969.

6. Lochte-Holtgreven, W., Ed. Plasma Diagnostics. North-Holland Publishing Com-
pany, 1968.

7. Mikic, B. B., Rohsenow, W. M., and Griffith, P. On bubble growth rates.
International Journal of Heat Mass Transfer 13 (1970), 657{665.

8. Reif, F. Fundamentals of Statistical and Thermal Physics. McGraw{Hill Book Com-
pany, 1965.

9. Stralen, S. J. D. V. The growth rate of vapour bubbles in superheated pure liquids
and binary mixtures. International Journal of Heat Mass Transfer 11 (1968), 1467{
1489.

10. Stratton, J. A. Electromagnetic Theory, �rst ed. McGraw-Hill Book Company,
Inc., 1941.

11. van de Hulst, H. Light Scattering by Small Particles. Dover Publications, Inc.,
1981.

12. Witze, C. P., Schrock, V. E., and Chambre, P. L. Flow about a growing
sphere in contact with a plane surface. International Journal of Heat Mass Transfer
11 (1968), 1637{1651.

BIB-1

Vita

Mr.Gregg T.Anderson was born 14 April 1951 in Grafton, North Dakota. He gradu-

ated from St.Thomas Public School in St.Thomas, North Dakota in June 1969. He entered

undergraduate studies at Mayville State University, Mayville, North Dakota, emerging with

a Bachelor of Science degree in Education in August 1975. He did some graduate work

in chemistry and then taught high school chemistry, mathematics and English within the

school system of North Dakota. He later joined the Air Force and received a commission

through the O�cer Training School, Lackland AFB, TX in December 1981. He then spent

the next two and a half years as a Second Lieutenant at Arizona State University where

he earned a Bachelor of Science degree in Electrical Engineering in May 1984.

His �rst assignment was at Wright{Patterson AFB where he worked within the F{16

System Program O�ce on the LANTIRN program. After two years, he changed his as-

signment and worked for the B{1 System Program O�ce. In August 1987 he separated

from the Air Force and joined the sta� of the Materials and Manufacturing Directorate,

Hardened Materials Branch as an electronics engineer. In September 1991, he entered

the Applied Mathematics Program, Department of Mathematics and Statistics, Air Force

Institute of Technology.

Permanent address: 6818 Packingham Dr.
Englewood, OH 45322

VITA-1

	Title
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	I. Introduction
	II. Physics
	III. Code Description
	IV. The Algorithm and Its Results
	V. Conclusion
	Appendix A. The Saha Equation
	Appendix B. The Timestep Calculation
	Appendix C. Partial Code Listing
	Bibliography
	Vita

